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Impulses & connected particles (13 pages; 28/8/18) 

(1) (Introduction) Tensions and compressions in rods 

Consider a car pulling a caravan, by means of a (rather long) 

towbar, as in the diagram below. 

 

Assuming that the car is pulling on the towbar with a force 𝑇1, 

then the towbar will be pulling on the car with the same force, by 

Newton's 3rd law (ie the car will experience a drag on it from the 

caravan, via the towbar).  

Similarly, the caravan will experience a pull from the towbar (of  

𝑇2, say), and the towbar will experience a pull of the same force 

from the caravan. 

 

Applying Newton's 2nd law to the towbar, assumed to be of mass 

𝑚, 𝑇1 − 𝑇2 = 𝑚𝑎, where 𝑎 is the acceleration of the car, caravan 

and towbar. 
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In order to be able to cope with the general case where 𝑎 ≠ 0, we 

have to make the modelling assumption that the towbar is 'light'; 

ie of negligible mass, so that 𝑇1 − 𝑇2 = 0,  

and hence 𝑇1 = 𝑇2 (= 𝑇, say). 

Diagrams in textbooks often appear as below (with other forces 

often included as well). It is intended that the 𝑇 forces are acting 

on the car and caravan (rather than the towbar). Strictly speaking, 

there ought to be separate force diagrams for the car and caravan. 

 

In this example, the towbar is being pulled apart, and is described 

as being under tension. The opposite situation, where the forces 

on the towbar are both inwards is referred to as a compression 

(also known as a 'thrust'), and this terminology is probably more 

obvious, as the towbar is of course being compressed. This will 

arise when the car is decelerating at a greater rate than the 

deceleration that the caravan would experience if it wasn't being 

pulled (ie due to the various resistance forces on it). (Consider 

Newton's 2nd law for the caravan: 𝑇 − 𝑅 = 𝑀𝑎 : it is possible for 

𝑇 to be positive (ie the towbar is under tension) when 𝑎 < 0, 

provided 𝑅 is large enough). 

It is customary when answering Mechanics questions involving 

tensions or compressions, to assume initially that we are dealing 

with a tension. Then if 𝑇 turns out to be negative; eg −1000N , we 

say that there is a compression (or thrust) of 1000N. 
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(2) Impulses 

Where a force 𝐹 is being applied to an object for a (usually) short 

period of time 𝑡, there is said to be an impulse 𝐹𝑡 on the object. 

As force is a vector quantity, impulse is as well. Also, Newton's 

3rd law effectively applies to impulses, as 𝑡 will be common to 

both objects. Thus, if P exerts an impulse J on Q, then Q exerts an 

equal and opposite impulse J on P. (Incidentally, J is often used to 

represent an impulse, rather than 𝐼, as 𝐼 is reserved for moment of 

inertia). 

This note concerns situations where two particles are connected 

by a light rod or inelastic string. As rods can be under either 

tension or compression (or thrust), we can talk about there being 

an impulsive tension or thrust (thrust is now used in preference 

to compression) in the rod if it is subjected to a force for a short 

period of time. 

Inelastic strings can be under tension, but not compression, and 

so only an impulsive tension is possible. 

 

(3) Example A 

In the diagram below, particle P (of mass M) is connected to 

particle Q (of mass m) by a rod. P is given an impulse of J, which 

acts at an angle 𝜃 to PQ, as shown. 
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The impulse J has a component acting along PQ, and so the rod is 

under an impulsive thrust (of K, say), and by Newton's 3rd law, 

the rod exerts an impulse K on P.  

By the same reasoning as for the towbar example, the rod also 

exerts an impulse K on Q.  

 

The impulse-momentum equation can be applied to 'impulse 

diagrams'.  

For P: (
𝐽𝑐𝑜𝑠𝜃
𝐽𝑠𝑖𝑛𝜃

) + (
−𝐾

0
) = 𝑀 (

𝑣𝑥

𝑣𝑦
)   (1) 

A special feature of these problems is that the component of the 

velocity of P along the rod (ie 𝑣𝑥), immediately after the impulse, 

will be the same as that of Q. (See (6) for a discussion of the 

situation involving an inelastic string.) 

For Q: (
𝐾
0

) = 𝑚 (
𝑣𝑥

0
)  (2) 

[Note that Q only experiences an impulse along the rod, and so 

will have no component of velocity in any other direction.] 

From (1) & (2), 

𝐽𝑐𝑜𝑠𝜃 − 𝐾 = 𝑀𝑣𝑥  (3) 

𝐽𝑠𝑖𝑛𝜃 = 𝑀𝑣𝑦 (4) 

𝐾 = 𝑚𝑣𝑥 (5) 
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Then, for example, to find the direction in which P moves after the 

impulse, we can write 𝑡𝑎𝑛𝜙 =
𝑣𝑦

𝑣𝑥
 , where 𝜙 is the angle that the 

path of P makes with the 𝑥-axis. 

From (3) & (5), 𝐽𝑐𝑜𝑠𝜃 − 𝑚𝑣𝑥 = 𝑀𝑣𝑥 , and hence 𝑣𝑥 =
𝐽𝑐𝑜𝑠𝜃

𝑀+𝑚
 

Then, from (4), 𝑡𝑎𝑛𝜙 =
𝑣𝑦

𝑣𝑥
=

(
𝐽𝑠𝑖𝑛𝜃

𝑀
)

(
𝐽𝑐𝑜𝑠𝜃

𝑀+𝑚
)

=
(𝑀+𝑚)𝑡𝑎𝑛𝜃

𝑀
 

[This seems reasonable: if 𝑚 is small relative to 𝑀, then 𝑡𝑎𝑛𝜙 ≈

𝑡𝑎𝑛𝜃, whilst if 𝑀 is small relative to 𝑚, then 𝑡𝑎𝑛𝜙 is large; ie 𝜙 ≈

90° (consider the case where Q is a brick wall: P wouldn't have an 

𝑥 component of velocity.] 

Alternative approach  

If we aren't required to find the impulsive tension (or thrust), 

then we can often consider the system as a whole (treating the 

impulsive tensions as internal impulses that cancel out), and 

apply the impulse-momentum equation (assuming there are no 

external forces acting, other than those producing the impulses). 

For this example, the overall impulse-momentum equation is: 

(
𝐽𝑐𝑜𝑠𝜃
𝐽𝑠𝑖𝑛𝜃

) = 𝑀 (
𝑣𝑥

𝑣𝑦
) + 𝑚 (

𝑣𝑥

0
)  

(with the same considerations affecting the velocity of Q) 

So  𝐽𝑐𝑜𝑠𝜃 = (𝑀 + 𝑚)𝑣𝑥    and  𝐽𝑠𝑖𝑛𝜃 = 𝑀𝑣𝑦 , 

giving  
𝑣𝑦

𝑣𝑥
=

(
𝐽𝑠𝑖𝑛𝜃

𝑀
)

(
𝐽𝑐𝑜𝑠𝜃

𝑀+𝑚
)

=
(𝑀+𝑚)𝑡𝑎𝑛𝜃

𝑀
 , as before. 

[We can in fact then find 𝐾 from 𝐾 = 𝑚𝑣𝑥] 

 

 



 fmng.uk 

6 
 

(4) Example B 

Referring to the diagram below, particles A and B are connected 

by an inelastic string that is taut initially. A is given an impulse in 

the direction of C, where ABC is an equilateral triangle, so as to 

give it a speed V. Let 𝐽 be the impulsive tension in the string when 

A reaches C. 

(i) Show that 𝐽 =
𝑚𝑀𝑉

2(𝑀+𝑚)
 

(ii*) Show that, after A reaches C, its direction of motion is at an 

angle 𝜙 below the line 𝐴𝐶, where 𝑡𝑎𝑛𝜙 =
𝑚√3

4𝑀+3𝑚
 

(iii) Find an expression for the kinetic energy lost by the system 

as a result of the impulsive tension created. 

 

 

 

 

 

 

 

 

Solution 

(i) Note that the string is slack until A reaches C, so that B doesn't 

move until then. 
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Let the directions 𝑥 & 𝑦 be as shown in the diagram above. The 

velocities of A and B just after C has been reached (ie when the 

impulsive tension has taken effect) can then be given in 

component form as follows: 

A: (
𝑣𝑥

𝑣𝑦
)  , B: (

0
𝑣𝑦

) 

[The 𝑥 component of B is 0, as there is no impulse on B in that 

direction; the 𝑦 component of B is 𝑣𝑦 , as A and B are assumed to 

move with the same speed along the string, when it is taut (ie just 

as for the rod situation). See (6) for a discussion of this 

assumption. 

Note: Although A is being pulled towards B (when it reaches C), a 

component of its original momentum is in the positive 𝑦 direction, 
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which enables the component of A's velocity after reaching C to be 

in the positive 𝑦 direction.] 

Conservation of momentum for A then gives: 

(
0

−𝐽
) = 𝑀 (

𝑣𝑥

𝑣𝑦
) − 𝑀 (

𝑉𝑠𝑖𝑛60°
𝑉𝑐𝑜𝑠60°

)  

and for B: (
0
𝐽

) = 𝑚 (
0

𝑣𝑦
) 

This then gives the 3 equations: 

0 = 𝑀𝑣𝑥 −
√3

2
𝑀𝑉  or 𝑣𝑥 =

√3

2
𝑉  (1) 

−𝐽 = 𝑀𝑣𝑦 −
1

2
𝑀𝑉  (2) 

𝐽 = 𝑚𝑣𝑦   (3) 

 

Then 𝐽 can be found by eliminating 𝑣𝑦 from (2) & (3): 

−𝐽 = 𝑀 (
𝐼

𝑚
) −

1

2
𝑀𝑉   

⇒
1

2
𝑀𝑉 = 𝐽(

𝑀

𝑚
+ 1)  

⇒ 𝐽 =
𝑀𝑉

2(
𝑀

𝑚
+1)

=
𝑚𝑀𝑉

2(𝑀+𝑚)
  

 

(ii) Referring to the previous diagram, tan(60° + 𝜙) =
𝑣𝑥

𝑣𝑦
 

From (1), 𝑣𝑥 =
√3

2
𝑉  and from (3), 𝑣𝑦 =

𝐽

𝑚
 =

𝑀𝑉

2(𝑀+𝑚)
  

 Hence 
𝑡𝑎𝑛60°+𝑡𝑎𝑛𝜙

1−𝑡𝑎𝑛60°𝑡𝑎𝑛𝜙
=

√3(𝑀+𝑚)

𝑀
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⇒
√3+𝑡𝑎𝑛𝜙

1−√3𝑡𝑎𝑛𝜙
= √3𝜆 , where 𝜆 =

𝑀+𝑚

𝑀
 

⇒ √3 + 𝑡𝑎𝑛𝜙 = √3𝜆 − 3𝜆𝑡𝑎𝑛𝜙  

⇒ 𝑡𝑎𝑛𝜙(1 + 3𝜆) = √3(𝜆 − 1)  

⇒ 𝑡𝑎𝑛𝜙 =
√3(𝜆−1) 

1+3𝜆
=

√3(
𝑚

𝑀
)

1+
3(𝑀+𝑚)

𝑀

=
√3𝑚

𝑀+3𝑀+3𝑚
=

𝑚√3

4𝑀+3𝑚
  

 

Alternative approach for (b) 

As before, we can bypass the internal impulses, by considering 

conservation of momentum for the overall system, noting that AC 

makes an angle of 30° with the 𝑥-direction (by dropping a 

perpendicular from A to BC): 

𝑀 (
𝑉𝑐𝑜𝑠30°
𝑉𝑠𝑖𝑛30°

) = 𝑀 (
𝑣𝑥

𝑣𝑦
) + 𝑚 (

0
𝑣𝑦

)  

Then 𝑣𝑥 =
√3

2
𝑉  and 𝑣𝑦 =

𝑀𝑉

2(𝑀+𝑚)
 , as before. 

 

(iii) Loss of kinetic energy =
1

2
𝑀𝑉2 −

1

2
𝑀(𝑣𝑥

2 + 𝑣𝑦
2) −

1

2
𝑚𝑣𝑦

2 

=
1

2
𝑀𝑉2 −

1

2
𝑀 (

√3

2
𝑉)

2

−
1

2
(𝑀 + 𝑚)(

𝑀𝑉

2(𝑀+𝑚)
)2  

=
1

8
𝑀𝑉2 −

1

8

𝑀2𝑉2

𝑀+𝑚
=

1

8
𝑀𝑉2 (1 −

𝑀

𝑀+𝑚
) =

1

8
𝑀𝑉2(

𝑚

𝑀+𝑚
)  

[Note that this is zero when 𝑚 = 0. ] 
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(5) Example C 

Referring to the diagram below, the particles A, B & C, of masses 

𝑚, 2𝑚 & 𝑚 respectively, lie at rest on a smooth table, and are 

connected, as shown, by taut inelastic strings. An impulse of 𝑚𝑣 is 

applied to B, in a direction perpendicular to CB and away from A. 

Find the initial velocities of the particles, immediately after the 

impulse. 

 

Solution 

Particle A will move along AB (with speed 𝑣𝑎, say), and particle C 

will move along CB (with speed 𝑣𝑐 , say). Let (
𝑣𝑥

𝑣𝑦
) be the velocity 

of particle B, where the 𝑥 and 𝑦 directions are as shown in the 

diagram. This velocity can be resolved along and perpendicular to 

AB, and the component in the direction AB must equal  𝑣𝑎.  

This gives: −𝑣𝑥𝑐𝑜𝑠30° + 𝑣𝑦𝑐𝑜𝑠60° = 𝑣𝑎  (1) 

Also, the component in the direction CB (𝑣𝑥) is assumed to equal 

𝑣𝑐 .  (2) 

In addition, the impulse-momentum equation can be applied to 

the whole system: 
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(
0

𝑚𝑣
) = 𝑚 (

−𝑣𝑎𝑐𝑜𝑠30°
𝑣𝑎𝑠𝑖𝑛30°

) + 2𝑚 (
𝑣𝑥

𝑣𝑦
) + 𝑚 (

𝑣𝑐

0
)  (3) 

 

(1), (2) give    −𝑣𝑐
√3

2
+ 𝑣𝑦(

1

2
) = 𝑣𝑎 , so that  𝑣𝑦 = 2𝑣𝑎 + 𝑣𝑐√3   (4) 

Then (2), (3) & (4) give: 

0 = −𝑣𝑎
√3

2
+ 2𝑣𝑐 + 𝑣𝑐    and  𝑣 =

1

2
𝑣𝑎 + 2(2𝑣𝑎 + 𝑣𝑐√3), 

so that   6𝑣𝑐 = 𝑣𝑎√3   

and  2𝑣 = 9𝑣𝑎 + 4𝑣𝑐√3 = 9𝑣𝑎 + 4 (
𝑣𝑎√3

6
) √3 = 11𝑣𝑎 

Thus  𝑣𝑎 =
2𝑣

11
   and  𝑣𝑐 =

2𝑣

11

√3

6
=

𝑣

11√3
 

Also (
𝑣𝑥

𝑣𝑦
) = (

𝑣

11√3

2𝑣𝑎 + 𝑣𝑐√3
) = (

𝑣

11√3
𝑣

11
(4 + 1)

) =
𝑣

11
(

1

√3

5
) 

from which the magnitude and direction of B's velocity can be 

determined, if necessary. 

 

(6) Theoretical considerations 

(i) Conservation of energy 

As was seen in Example B, conservation of energy can't generally 

be used. Even if a system is not subject to any external forces (and 

the system does no work), it can still lose energy (for example, 

consider the collision of two balls on a smooth surface, when 

energy will be lost unless 𝑒 = 1). 

However, it seems that it is possible to use conservation of energy 

for problems involving connected particles when there are no 

impulsive tensions or thrusts in the rod or string (and no work is 
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done to or by the system)(see Wragg, "Modern Mechanics", p173, 

Example 9). 

 

(ii) In Examples B and C (involving inelastic strings), we assumed 

that the components of the velocities of the particles along the 

string (immediately after the impulse) were the same. This has to 

be true in the case of a rod, but isn't quite as obvious for an 

inelastic string.  

First of all, note that the initial tension might disappear at some 

subsequent point, but we are only concerned with the immediate 

velocities of the particles. 

Suppose that (as in Example B), the two particles are A and B, 

with B being the one at the free end of the string, and let the 

components of the velocities of A and B along the sting 

(immediately after the impulse) be 𝑣𝑎 and 𝑣𝑏 . 

As the string is inelastic, it is definitely true that 𝑣𝑏 ≥ 𝑣𝑎.  

Textbooks always assert that 𝑣𝑏 = 𝑣𝑎 , but this is questioned in an 

internet article by C.T.O'Sullivan ("Impulsive_tensions_in_strings-

a_century_of_misconception"), which compares the motion of B 

with that of a ball involved in a direct collision with another ball, 

where the coefficient of restitution is not 1. In that case, energy is 

lost, and the ball's speed is not the same as it would be if 𝑒 = 1.  

Mr. O'Sullivan makes the case for a similar treatment for 

impulsive tensions: 

... 
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The idea (I assume) is that some of the kinetic energy that has 

been lost might be available (for a suitable string) to increase 𝑣𝑏 , 

so that  𝑣𝑏 > 𝑣𝑎. However, this alternative model probably 

wouldn't score any marks in an A Level exam. 


