Important Ideas - Transformations (3 pages; 22/10/20)
(1) Translation of $\binom{a}{b}: y=f(x) \rightarrow y-b=f(x-a)$
(2) Stretch of scale factor k in the x direction (eg if $k=2$, graph of $y=x^{2}$ is stretched outwards, so that the x-coordinates are doubled): $y=f(x) \rightarrow y=f\left(\frac{x}{k}\right)$

Stretch of scale factor k in the y direction: $y=f(x) \rightarrow \frac{y}{k}=f(x)$
(3) Reflection in the y-axis: $f(x) \rightarrow f(-x)$

Reflection in the x-axis: $y=f(x) \rightarrow-y=f(x)$
(4) Note that, at each stage of a composite transformation, we must be replacing x by either $x+a$ (where a can be negative) or $k x$ (and similarly for y).
(5) Reflection in the line $x=L: y=f(x) \rightarrow y=f(2 L-x)$

Reflection in the line $y=M: y=f(x) \rightarrow 2 M-y=f(x)$

Justification

A reflection in the line $x=L$ is equivalent to a reflection in the line $x=0$, followed by a translation of $\binom{2 L}{0}$ (see the diagram below).

Thus $y=f(x) \rightarrow y=f(-x) \rightarrow y=f(-[x-2 L])=f(2 L-x)$

Similarly for a reflection in the line $y=M$, so that $y=f(x) \rightarrow-y=f(x) \rightarrow-(y-2 M)=f(x)$ or $2 M-y=f(x)$
(6) Example: To obtain $y=\sin (2 x+60)$ from $y=\sin x$,
either (a) stretch by scale factor $\frac{1}{2}$ in the x direction, to give $y=\sin (2 x)$, and then translate by $\binom{-30}{0}$, to give $y=\sin (2[x+30])=\sin (2 x+60)$ or (b) translate by $\binom{-60}{0}$, to give $y=\sin (x+60)$, and then stretch by scale factor $\frac{1}{2}$ in the x direction, to give $y=\sin (2 x+60)$ [It is perhaps more awkward to produce a sketch by method (b).]
[Note that, at each stage, we are either replacing x by $k x$, or by
$x \pm a]$
(7) Transformations involving moduli signs
(i) $y=f(|x|)$
$f(|x|)=f(x)$ when $x \geq 0$
$f(|x|)=f(-x)$ when $x<0$ (ie the left-hand half of $y=f(x)$ is replaced by the reflection of the right-hand half in the y-axis)
(ii) $|y|=f(x)$

As $|y| \geq 0$, the graph is undefined where $f(x)<0$.
Where $f(x) \geq 0$, the graph of $|y|=f(x)$ is that of $y=f(x)$, together with its reflection in the x-axis.
(8) A rotation of 180° is equivalent to a reflection in the line $x=0$, followed by a reflection in the line $y=0$, so that $y=f(x)$
$\rightarrow y=-f(-x)$

