Series - Important Ideas (3 pages ; 11/3/21)

(1) $\sum_{r=1}^{n} r=1+2+3+\cdots+n=\frac{1}{2} n(n+1)$
[Informal proof: The average size of the terms being added is $\frac{1}{2}(1+n)$, and there are n terms.]
(2) Arithmetic sequences and series
[Note: 'series' \Rightarrow the terms of the sequence are added.]
Inductive/iterative/recurrence formula
$a_{r+1}=a_{r}+d ; a_{1}=a$

Deductive/direct formula

$a_{r}=a+(r-1) d=d r+(a-d)=d r+a_{0}$
[compare with the straight line $y=m x+c$, with $x=r, y=a_{r}$, $m=d \& c=a_{0}=a_{1}-d$; noting that a_{0} is the hypothetical ' 0 th' term of the sequence.]
(3) Method of Differences

Example: To find $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)(r+3)}$
Step 1: Writing $\frac{1}{(r+1)(r+2)(r+3)}=\frac{A}{r+1}+\frac{B}{r+2}+\frac{C}{r+3}$ (method of Partial Fractions),

$$
\begin{align*}
& \text { RHS }=\frac{A(r+2)(r+3)+B(r+1)(r+3)+C(r+1)(r+2)}{(r+1)(r+2)(r+3)} \text {, so that } \\
& 1=A(r+2)(r+3)+B(r+1)(r+3)+C(r+1)(r+2) \tag{}
\end{align*}
$$

Setting $r=-2,1=-B ; B=-1$

Setting $r=-3,1=2 C ; C=\frac{1}{2}$
Setting $r=-1,1=2 A ; A=\frac{1}{2}$
[As a check, equating the coefficients of r^{2} (as $\left(^{*}\right)$ has to hold for all r), $0=A+B+C]$
Thus $\frac{1}{(r+1)(r+2)(r+3)}=\frac{1}{2(r+1)}-\frac{1}{r+2}+\frac{1}{2(r+3)}$

Step 2: $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)(r+3)}=\frac{1}{2} \sum_{r=1}^{n}\left\{\frac{1}{(r+1)}-\frac{2}{(r+2)}+\frac{1}{(r+3)}\right\}=\frac{1}{2} S$, where $S=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{n}+\frac{1}{n+1}\right)$

$$
\begin{aligned}
& -2\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}\right) \\
& \quad+\left(\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}\right)
\end{aligned}
$$

The bold terms cancel, so that
$\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)(r+3)}=\frac{1}{2}\left\{\frac{5}{6}-\frac{2}{3}-\frac{1}{n+2}+\frac{1}{n+3}\right\}$
$=\frac{1}{12}-\frac{1}{2(n+2)}+\frac{1}{2(n+3)}$

Notes

(i) Avoid writing $S=\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)+\cdots$, as it complicates the cancelling.]
(ii) The method of differences relies on there being a suitable form for the partial fractions!
(4) Power series
(i) Maclaurin: $f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots$
[As a first approximation, $f^{\prime}(0) \approx \frac{f(x)-f(0)}{x}$ (for small x)]
(ii) Taylor I: $f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots$
[As a first approximation, $f^{\prime}(a) \approx \frac{f(x)-f(a)}{x-a}$ (for x close to a)]
(iii) Taylor II: $f(x+a)=f(a)+x f^{\prime}(a)+\frac{x^{2}}{2!} f^{\prime \prime}(a)+\cdots$
[As a first approximation, $f^{\prime}(a) \approx \frac{f(x+a)-f(a)}{x}$ (for small x);
$a=0$ gives the Maclaurin series]
(5) $\sum_{r=1}^{\infty} r a^{r}=a \frac{d}{d a} \sum_{r=1}^{\infty} a^{r}=a \frac{d}{d a}\left(\frac{a}{1-a}\right) \quad($ when $|a|<1)$
$=a \cdot \frac{(1-a)-a(-1)}{(1-a)^{2}}=\frac{a}{(1-a)^{2}}$

