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Hungarian Algorithm (9 pages; 28/8/17) 

 

(1) Example: 3 workmen (A, B & C) are to carry out 3 tasks (P, Q 

& R). They each take certain times (in minutes) for the 3 tasks, as 

shown in Table 1. 

 

 P Q R 
A 9 8 6 
B 11 8 7 
C 10 8 7 

 

Table 1 

 

The aim is to allocate the workers to the tasks, in such a way as to 

minimise the total time taken. This is an example of an allocation 

(or assignment) problem. 

 

Assuming that a solution is not obtainable by inspection (which 

would be more difficult for larger arrays), we can convert the 

problem to an equivalent simpler one by reducing all the 

elements of row A by 6 (so that the smallest element is 0); all the 

elements of row B by 7, and all the elements of row C by 7. Thus it 

is the relative times that are important.  

After reducing by rows in this way, the new table is shown in 

Table 2. 
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 P Q R 
A 3 2 0 
B 4 1 0 
C 3 1 0 

 

Table 2 

 

Our aim is to have enough zeros in the table, so that each 

workman can be matched to a task with zero time. 

For this example, this will be possible if and only if all the zeros in 

the table can be covered by crossing out a total of 3 rows and/or 

columns (eg 2 rows and 1 column, or 3 columns), but not by 

crossing out a smaller number. In general, the desired number of 

rows/columns to be crossed out is the size of the array (assumed 

to be square for the moment); ie the number of rows or columns. 

 

In Table 2, this isn't yet the case, as only 1 column is needed to 

cover the zeros. However, we can also reduce the table by 

columns (in the same way), to give Table 3. 

 

 P Q R 
A 0 1 0 
B 1 0 0 
C 0 0 0 

 

Table 3 

 

Now 3 rows/columns are needed (3 rows or 3 columns), and the 

following solutions can be noted (Table 4): 

 



 fmng.uk 

3 
 

(a)  

 P Q R 
A 0 1 0 
B 1 0 0 
C 0 0 0 

 

(b)  

 P Q R 
A 0 1 0 
B 1 0 0 
C 0 0 0 

 

(c)  

 P Q R 
A 0 1 0 
B 1 0 0 
C 0 0 0 

 

Table 4 

 

The total times associated with these solutions are found by 

referring to the original table. Thus, for (a) it is 9 + 8 + 7 = 24, 

for (b) it is 9 + 7 + 8 = 24, and for (c) it is 6 + 8 + 10 = 24 

 

Note 

Had all the times been 10 times greater, then we could have 

divided them all by 10, without changing the nature of the 

problem - we have just changed its scale. (But note that we cannot 

divide one row's elements by 10, leaving the other rows 

untouched. Thus in Table 5b, looked at from the point of view of 
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task P, A's time has been reduced by 81, whilst from the point of 

view of task Q it has been reduced by only 72; thus workman A is 

now more likely to be matched with task P, so that the nature of 

the problem has changed. 

  

 P Q R 
A 90 80 60 
B 110 80 70 
C 100 80 70 

 

Table 5a 

 

 P Q R 
A 9 8 6 
B 110 80 70 
C 100 80 70 

 

Table 5b 

 

(2) In exam questions, it is normally specified that (say) the rows 

should be reduced before the columns, as the outcome is 

generally different. In this example, had we reduced by columns 

first we would have obtained Table 6. 

 

 P Q R 
A 0 0 0 
B 2 0 1 
C 1 0 1 

 

Table 6 
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and now there is no scope to reduce by rows. However, the array 

only requires 1 row and 1 column to cover the zeros, and hence 

no solution can yet be obtained. (But note that there must be a 

minimum time, and so a solution does exist.) 

In order to find the solution, we employ the Hungarian algorithm. 

This involves back-tracking a bit, so that some of the elements of 

the array are increased, to enable others to be reduced. The net 

effect will be that  there are more reductions than increases, so 

that we are making progress in simplifying the problem, and 

eventually creating more zeros. 

We already know that, for this example, the solutions can be 

represented as follows (Table 7): 

(a) 

 P Q R 
A 0 0 0 
B 2 0 1 
C 1 0 1 

 

(b) 

 P Q R 
A 0 0 0 
B 2 0 1 
C 1 0 1 

 

(c) 

 P Q R 
A 0 0 0 
B 2 0 1 
C 1 0 1 

 

Table 7 
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In each case one of the 1s is being used; ie the smallest value apart 

from the zeros. 

We want to manipulate the array, by adding or subtracting a 

certain amount to/from all the elements in a particular row or 

column (as this won't change the nature of the problem), in such a 

way that the 1s can be reduced to zeros. 

This is done by crossing out the necessary rows/columns, as 

before, in order to cover up the zeros, and then adding 1 (in 

general, the smallest non-zero value in the array) to each element 

in a crossed out row or column. This means that any element that 

is an intersection of a crossed out row or column is increased 

twice. Now there will be no zeros, and we can reduce every 

element of the array by 1, with the effect that the three 1s in Table 

6 now becomes zeros; as do the zeros in Table 6, except for 

element AQ (which isn't needed for any of the solutions: it would 

require more than one of the 1s to be used, and so couldn't 

produce the minimum possible cost). 

The 1st stage of the procedure was to cross out the rows/columns 

needed to cover the zeros. In general, there could be more than 

one way of doing this, and it is best to choose the way that gives 

rise to the largest non-zero element amongst the elements that 

aren't crossed out, as this will reduce the array the most. Table 8 

shows the crossed out row and column (when handwritten, a line 

would be drawn over the 3 elements in the relevant row and 

column). 

 

 P Q R 
A 0 0 0 
B 2 0 1 
C 1 0 1 

 

Table 8 
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 The 2nd stage of the procedure was to add 1 in respect of each 

crossing out (so that 2 is added to the intersecting element AQ), 

to give Table 9: 

 

 P Q R 
A 1 2 1 
B 2 1 1 
C 1 1 1 

 

Table 9 

 

Then 1 was taken off every element, to give Table 10: 

 P Q R 
A 0 1 0 
B 1 0 0 
C 0 0 0 

 

Table 10 

 

Now 3 rows/columns are needed to cover the zeros, so we have 

finished (apart from identifying the matches). Table 10 is 

identical to Table 3, obtained by first reducing by rows. 

 

Notes 

(i) In general, it may be necessary to repeat the process of 

reducing by rows and/or columns after the Algorithm procedure 

has been applied. 
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(ii) When the arrays are large, so that matches may not be found 

by inspection, the Maximum Matching algorithm for bipartite 

graphs could be used instead (see separate note). 

(iii) A shortcut can be applied to the Algorithm procedure, by 

noting that the overall effect is to reduce the uncovered elements 

by 1 (for the above example) and increase any intersecting 

elements by 1. 

 

Summary of the Hungarian algorithm 

(i) Reduce the array by rows and columns (having divided all 

elements by the same number, if possible). 

(ii) Cover the zero elements with as many rows and/or columns 

as are necessary. If the number of covered rows/columns equals 

the size of the array, then we can find a solution; ie workmen and 

tasks are matched up so that there is a zero time in each case (in 

the reduced array). The actual times are then found by referring 

to the original array. 

(iii) If the number of covered rows/columns is less than the size 

of the array, then we establish the smallest non-covered element:  

S (say). This value S is then added to each element of a covered 

row or column (so adding twice for any intersections), and finally 

S is subtracted from every element of the array. (Alternatively, we 

can employ the shortcut mentioned above.) 

(iv) Repeat the process. 

 

(3) Variations 

(i) Problems where the total amount needs to be maximised, 

rather than minimised. 

In this case, we can just multiply each element by -1, and then 

minimise as before. We can then add the largest value in the 
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original array to every element. This has the effect of removing 

minus signs and reducing the sizes of values. 

(As an alternative to adding the largest value to every element, 

the minus signs could be eliminated on a row by row (or column 

by column) basis by adding the necessary amount to each 

element of the row (column).) 

 

(ii) Non-square arrays. 

These are dealt with very easily, by adding in one or more dummy 

rows or columns, to create a square array. The elements in each 

dummy row or column are all the same, so that the dummy has no 

effect on the nature of the problem. The dummy values are often 

taken to be the largest value in the array, so that they won't 

hinder the necessary row or column reductions. (A dummy value 

of zero is sometimes used though. If it is a dummy column (say), 

then we will not be able to reduce the array by rows.) 

 

(iii) It may be the case that some of the allocations (eg a 

particular workman to a particular task) are not allowed. This can 

be dealt with easily by inserting a large number (relative to the 

values in the array; eg twice the largest value) as the relevant 

elements. This makes these elements unattractive, and so they 

won't appear in the solution(s).  


