Groups - Part 2 (12 pages; 23/10/16)

## (A) Cyclic Groups - Examples

Notes
(a) All cyclic groups of order $n$ (denoted $C_{n}$ ) are isomorphic.
(b) All groups of prime order are cyclic (but the converse is not true).
(1) $(\mathbb{Z},+)$
infinite order; $e=0 ; a^{-1}=-a$
(2) $\{0,1,2, \ldots, n-1\}$ under addition $\bmod n($ or $' m o d u l o ' ~ n)$

- commonly denoted $\left(\mathbb{Z}_{n},+\right.$ )

Note: it is possible to write $a+{ }_{n} b$, but $a+b$ is used when the modulus is understood.

For eg $\left(\mathbb{Z}_{4},+\right),\{0,2\}$ is a subgroup.
(3) $(\{1,-1\}, \times)$
(4) $\{1, i,-1,-i\}$ under multiplication of complex numbers

|  | 1 | $i$ | -1 | $-i$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $i$ | -1 | $-i$ |
| $i$ | $i$ | -1 | $-i$ | 1 |
| -1 | -1 | $-i$ | 1 | $i$ |
| $-i$ | $-i$ | 1 | $i$ | -1 |

$i^{2}=-1, i^{3}=-i, i^{4}=1$, so $i$ is of order 4
$(-1)^{2}=1$, so -1 is of order 2
$(-i)^{2}=-1,(-i)^{3}=i,(-i)^{4}=1$, so $-i$ is of order 4
Thus, $i \&-i$ are generators of the group (being inverses of each other).
(5) $\{1,2,4,8\}$ under multiplication $\bmod 15$

|  | 1 | 2 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 4 | 8 |
| 2 | 2 | 4 | 8 | 1 |
| 4 | 4 | 8 | 1 | 2 |
| 8 | 8 | 1 | 2 | 4 |

(6) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\}$
under multiplication
[ $a=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right): 90^{\circ}$ rotation clockwise
$b=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right): 180^{\circ}$ rotation
$c=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right): 90^{\circ}$ rotation anti-clockwise]
[More generally, the group generated by the rotation of a plane through $\frac{360^{\circ}}{n}$ about a fixed point.]

|  | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ | $e$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $e$ | $a$ | $b$ |

$a \& c$ are generators of the group
(7) $\left\{x,-\frac{1}{x}, \frac{x-1}{x+1}, \frac{1+x}{1-x}\right\}$
under composition of functions on $x \in \mathbb{R}, x \neq-1,0,1$
Let $a=-\frac{1}{x}, b=\frac{x-1}{x+1} \& c=\frac{1+x}{1-x}$
Then $a^{2}=-\frac{1}{\left(-\frac{1}{x}\right)}=x=e$
and $b^{2}=\frac{\left(\frac{x-1}{x+1}\right)-1}{\left(\frac{x-1}{x+1}\right)+1}=\frac{x-1-(x+1)}{x-1+(x+1)}=\frac{-2}{2 x}=a$
So, if this is to be a group, it must be cyclic, rather than the Klein 4 -group (since all elements are of order 2 for the latter).
As $a^{2}=e$, it is worth relabelling the elements, so that $b=-\frac{1}{x}$
Then it doesn't matter how the other non-identity elements are labelled; eg $a=\frac{x-1}{x+1} \& c=\frac{1+x}{1-x}$, and the Cayley table is found to be:

|  | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ | $e$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $e$ | $a$ | $b$ |

(8) If $\omega=e^{2 \pi i / 3},\left\{1,-1, \omega,-\omega, \omega^{2},-\omega^{2}\right\}$ under multiplication

## (B) Non-Cyclic Groups - Examples

(1) $\{1,3,5,7\}$ under multiplication $\bmod 8$

Note: More generally, the positive integers less than $n$ which have no factors in common with $n$ (with 1 included) form a group under the operation of multiplication $\bmod n$.

|  | 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 3 | 5 | 7 |
| 3 | 3 | 1 | 7 | 5 |
| 5 | 5 | 7 | 1 | 3 |
| 7 | 7 | 5 | 3 | 1 |

Klein 4-group (as not cyclic)
Note that the similar-looking group $\{1,2,4,8\}$ under multiplication $\bmod 15$ was found to be cyclic.
(2) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\}$
under multiplication
$\left[a=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right.$ : reflection about $x$-axis
$b=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ : reflection about $y$-axis
$c=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right): 180^{\circ}$ rotation $]$

|  | $e$ | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $e$ | $c$ | $b$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $b$ | $a$ | $e$ |

ie the Klein 4-group
(3) The symmetry group of an equilateral triangle, $D_{3}$ has order 6 . [D stands for 'dihedral' ("having or formed by 2 planes" although that doesn't really explain much!)]
[More generally, $D_{n}$ (the symmetry group of a regular $n$-sided polygon) is of order $2 n$ : in addition to the identity element, there will be $n-1$ rotations and $n$ reflections.]


Let $I$ be the identity transformation.
Let $P$ be a rotation of $120^{\circ}$ anticlockwise in the plane of the paper.
Let $Q$ be a rotation of $120^{\circ}$ clockwise in the plane of the paper.
Let $U, V \& W$ be reflections in the $U, V \& W$ axes respectively.
The Cayley table is found to be as follows:
(with the 1st transformation being along the top)

|  | I | P | Q | U | V | W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | I | P | Q | U | V | W |
| P | P | Q | I | W | U | V |
| Q | Q | I | P | V | W | U |
| U | U | V | W | I | P | Q |
| V | V | W | U | Q | I | P |
| W | W | U | V | P | Q | I |

The following observations can be made:
(i) The group is non-abelian.
(ii) $U, V \& W$ are of order 2 .
(iii) $P^{3}=P\left(P^{2}\right)=P Q=I$ and $Q^{3}=Q\left(Q^{2}\right)=Q P=I$, so that both $P \& Q$ are of order 3. And $\{I, P, Q\}$ is a subgroup.
(Note that, whilst $U, V \& W$ don't appear in the section of the table with rows and columns of $I, P \& Q$, the reverse isn't true: $P \& Q$ do appear in the remainder of the table.)
(4) Permutations of $(1,2,3, \ldots n)$
eg (for $n=5)\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 2 & 1\end{array}\right)$ is a possible permutation.
Denoted $S_{n}$ ( $S$ stands for symmetric - though the origin of this isn't clear).

The order is $n$ ! ( $n$ ways of choosing the 1 st entry of the 2 nd row, $n-1$ ways of choosing the 2 nd entry etc)
(By convention, the top row is ordered.)
To find inverse permutations, simply swap the two rows and then order the top row.
For $n=3$, the elements of the group are

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), b=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \\
& c=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), d=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
& a^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2 \\
1 & 2 & 3
\end{array}\right)=e, b^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
1 & 2 & 3
\end{array}\right)=e \\
& c^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right)=d, d^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right)=c \\
& f^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=e
\end{aligned}
$$

$c^{3}=c\left(c^{2}\right)=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right)=e, d^{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 3\end{array}\right)=e$

All groups of order 6 are either cyclic or isomorphic to $D_{3}$. As none of the elements has order $6, S_{3}$ cannot be cyclic. Comparing with $D_{3}$, and relabelling, the two elements of order 3, $c$ \& $d$ need to be $P \& Q$ (or the other way round); noting that $c \& d$ are the cyclic permutations of $(1,2,3)$.
Then, we can establish that $a f=c$, so that we want $a, b \& f$ to become $U, W \& V$, respectively (as $U V=P$ ).
(5) $\left\{x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x-1}{x}, \frac{x}{x-1}\right\}$
under composition of functions on $x \in \mathbb{R}, x \neq 0,1$
Let $e=x, a=1-x, b=\frac{1}{x}, c=\frac{1}{1-x}, d=\frac{x-1}{x}, f=\frac{x}{x-1}$

|  | e | a | b | c | d | f |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| e | e | a | b | c | d | f |
| a | a | e | d | f | b | c |
| b | b | c | e | a | f | d |
| c | c | b | f | d | e | a |
| d | d | f | a | e | c | b |
| f | f | d | c | b | a | e |

This group is non-abelian.
$a^{2}=e$, so $a$ is of order 2
$b^{2}=e$, so $b$ is of order 2
$c^{2}=d, c^{3}=c\left(c^{2}\right)=c d=e$ so $c$ is of order 3
[note that $c\left(c^{2}\right)=c(c)(c)=\left(c^{2}\right) c$, by associativity, so that $c d=d c($ even though the group isn't abelian) $]$
$d^{2}=c, d^{3}=d\left(d^{2}\right)=d c=e$ so $d$ is of order 3
$f^{2}=e$, so $f$ is of order 2

Subgroups: $\{e, a\},\{e, b\},\{e, f\},\{e, c, d\}$
By re-labelling, we can see that this group is isomorphic to $D_{3}$ :
Rewrite $e$ as $I, c$ as $P, d$ as $Q$, a as $U, f$ as $V \& b$ as $W$
(since $a f=c \& U V=P$ )
(6) Symmetries of a square (order 8), with the following subgroups:

4 reflections (each of order 2)
rotation through 180 (order 2)
rotations through $90^{\circ}$ or $-90^{\circ}$ (each of order 4)

## (C) Summaries of Results

## Groups of Order 4

(1) All groups of order 4 are either cyclic or are the Klein 4-group.
(2) Cyclic groups of order 4 have the following structure:

|  | $e$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $b$ | $c$ | $e$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $e$ | $a$ | $b$ |

Alternative form:

|  | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| :--- | :--- | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| $a$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ |


| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ |
| :---: | :---: | :---: | :---: | :---: |
| $a^{3}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ |

The only proper subgroup is: $\left\{e, a^{2}\right\}$
(3) The Klein 4-group has the following structure:

|  | $e$ | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| $e$ | $e$ | $a$ | $b$ | $c$ |
| $a$ | $a$ | $e$ | $c$ | $b$ |
| $b$ | $b$ | $c$ | $e$ | $a$ |
| $c$ | $c$ | $b$ | $a$ | $e$ |

Alternative form:

|  | $e$ | $a$ | $b$ | $a b$ |
| :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $a b$ |
| $a$ | $a$ | $e$ | $a b$ | $b$ |
| $b$ | $b$ | $a b$ | $e$ | $a$ |
| $a b$ | $a b$ | $b$ | $a$ | $e$ |

(4) Both these types are abelian.

## Groups of Order 6

(1) All groups of order 6 are either cyclic (and therefore abelian) or isomorphic to $D_{3}$ (symmetries of an equilateral triangle) (and therefore non-abelian).
(2) Cyclic groups of order 6 have the following proper subgroups: $\left\{e, a^{2}, a^{4}\right\}$ and $\left\{e, a^{3}\right\}$
(3) The $D_{3}$ group has the following structure:

|  | I | P | Q | U | V | W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | I | P | Q | U | V | W |
| P | P | Q | I | W | U | V |
| Q | Q | I | P | V | W | U |
| U | U | V | W | I | P | Q |
| V | V | W | U | Q | I | P |
| W | W | U | V | P | Q | I |

## Cyclic Groups

(1) All groups of prime order are isomorphic to each other; being cyclic. Therefore they are isomorphic to $\left(\mathbb{Z}_{n},+\right)$.
(2) All cyclic groups are abelian.
(3) A cyclic group of order $n$ (whether $n$ is prime or not) can always be created from $\{0,1,2, \ldots, n-1\}$ under addition $\bmod n$.
(4) $C_{n}$ is isomorphic to the group generated by the rotation of a plane though $\frac{2 \pi}{n}$, and thus cyclic groups of all orders exist.
(5) A group of order $n$ is cyclic if it contains an element of order $n$.
(6) Any subgroup of a cyclic group must also be cyclic.
(7) For each factor $f$ of the order $n$ of a cyclic group, there will be a subgroup of order $f$.

For example, the proper subgroups of the cyclic group of order 12 are: $\left\{e, a^{2}, a^{4}, a^{6}, a^{8}, a^{10}\right\},\left\{e, a^{3}, a^{6}, a^{9}\right\},\left\{e, a^{4}, a^{8}\right\},\left\{e, a^{6}\right\}$

## Abelian Groups

(1) A group that contains no elements of order greater than 2 (ie where every element is its own inverse) must be abelian.
(2) All cyclic groups are abelian.
(3) Klein 4-groups are abelian.
(4) All groups of order 4 are abelian.

## Subgroups

(1) Lagrange's theorem: The order of a subgroup of a finite group is a factor of the order of the group.
(2) From Lagrange's theorem, groups of prime order have no subgroups.
(3) Let $a$ be an element of a group G. Then $\left\{a^{n}: n \in \mathbb{Z}\right\}$ is a subgroup of $G$ (referred to as the subgroup generated by $a$ ). This is an easy way of finding a subgroup.
(4) If H is a non-empty subset of G , then if $a b^{-1} \in H \forall a, b \in H$, then $H$ is a subgroup of $G$
(5) Any subgroup of a cyclic group must also be cyclic.

## Elements of Groups

(1) The order of an element divides the order of the group.
(2) Let $a$ be an element of a group $G$. Then $\left\{a^{n}: n \in \mathbb{Z}\right\}$ is a subgroup of G (referred to as the subgroup generated by $a$ ). This is an easy way of finding a subgroup.
(3) If $g$ is a generator of a group, then $g^{-1}$ will be also.
(4) If $g$ is a generator of a group of order $n$, then $g^{k}$ will be also if and only if $k$ and $n$ are co-prime (ie have no common factors).
(5) Every element of a group of prime order is a generator of the group.

## Isomorphisms

(1) All groups of prime order are isomorphic to each other; being cyclic. Therefore they are isomorphic to $\left(\mathbb{Z}_{n},+\right)$.
(2) Groups of order 4 are either cyclic, or have 3 elements of order 2 (the Klein 4-group).
(3) Cayley's theorem: Any group of order $n$ is isomorphic to a subgroup of $S_{n}$ (the group of permutations of ( $1,2,3, \ldots, n$ ) ).
(D) Table of possibilities

| Order | Cyclic? | Abelian? | Proper <br> Subgroups? | Notes |
| :--- | :--- | :--- | :--- | :--- |
| 4 | Y | Y | Y | $C_{4}$ |
| 4 | N | Y | Y | Klein 4-group |
| 6 | Y | Y | Y | $C_{6}$ |
| 6 | N | N | Y | $D_{3}, S_{3}$ |
| Prime,$p$ | Y | Y | N | $C_{p}$ |
| Non-prime,$n$ | Y | Y | Y | $C_{n}$ |
| Non-prime,$n$ | N | $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |  |

