Groups - Part 2 (12 pages; 23/10/16)

(A) Cyclic Groups - Examples

Notes

(a) All cyclic groups of order n (denoted C_n) are isomorphic.

(b) All groups of prime order are cyclic (but the converse is not true).

(1)(Z,+)

infinite order; e = 0; $a^{-1} = -a$

(2) {0,1,2, ..., n - 1} under addition mod n (or 'modulo' n)

- commonly denoted $(\mathbb{Z}_n, +)$

Note: it is possible to write $a +_n b$, but a + b is used when the modulus is understood.

For eg (\mathbb{Z}_4 , +), {0,2} is a subgroup.

(3) ({1,−1},×)

(4) $\{1, i, -1, -i\}$ under multiplication of complex numbers

	1	i	-1	-i
1	1	i	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
— <i>i</i>	-i	1	i	-1

 $i^{2} = -1, i^{3} = -i, i^{4} = 1$, so *i* is of order 4 $(-1)^{2} = 1$, so -1 is of order 2 $(-i)^{2} = -1, (-i)^{3} = i, (-i)^{4} = 1$, so -i is of order 4

Thus, i & -i are generators of the group (being inverses of each other).

(5) {1,2,4,8} under multiplication mod 15

	1	2	4	8
1	1	2	4	8
2	2	4	8	1
4	4	8	1	2
8	8	1	2	4

$$(6) \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

under multiplication

 $\begin{bmatrix} a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}: 90^{\circ} \text{ rotation clockwise}$ $b = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}: 180^{\circ} \text{ rotation}$ $c = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}: 90^{\circ} \text{ rotation anti-clockwise}]$

[More generally, the group generated by the rotation of a plane through $\frac{360^{\circ}}{n}$ about a fixed point.]

	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b	b	С	е	а
С	С	е	а	b

(7)
$$\{x, -\frac{1}{x}, \frac{x-1}{x+1}, \frac{1+x}{1-x}\}$$

under composition of functions on $x \in \mathbb{R}, x \neq -1,0,1$

Let
$$a = -\frac{1}{x}$$
, $b = \frac{x-1}{x+1}$ & $c = \frac{1+x}{1-x}$
Then $a^2 = -\frac{1}{\left(-\frac{1}{x}\right)} = x = e$
and $b^2 = \frac{\left(\frac{x-1}{x+1}\right)-1}{\left(\frac{x-1}{x+1}\right)+1} = \frac{x-1-(x+1)}{x-1+(x+1)} = \frac{-2}{2x} = a$

So, if this is to be a group, it must be cyclic, rather than the Klein 4-group (since all elements are of order 2 for the latter).

As $a^2 = e$, it is worth relabelling the elements, so that $b = -\frac{1}{x}$

Then it doesn't matter how the other non-identity elements are labelled; eg $a = \frac{x-1}{x+1}$ & $c = \frac{1+x}{1-x}$, and the Cayley table is found to be:

	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b	b	С	е	а
С	С	е	а	b

(8) If $\omega = e^{2\pi i/3}$, {1, -1, ω , $-\omega$, ω^2 , $-\omega^2$ } under multiplication

(B) Non-Cyclic Groups - Examples

(1) {1,3,5,7} under multiplication mod 8

Note: More generally, the positive integers less than n which have no factors in common with n (with 1 included) form a group under the operation of multiplication mod n.

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Klein 4-group (as not cyclic)

Note that the similar-looking group $\{1,2,4,8\}$ under multiplication mod 15 was found to be cyclic.

$$(2) \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

under multiplication
$$[a = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}: \text{ reflection about } x\text{-axis}$$
$$b = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}: \text{ reflection about } y\text{-axis}$$
$$c = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}: 180^{\circ} \text{ rotation}]$$
$$\boxed{\begin{array}{c|c|c|c|c|c|c|}\hline e & a & b & c \\ \hline e & e & a & b & c \\ \hline a & a & e & c & b \\ \hline b & b & c & e & a \\ \hline c & c & b & a & e \end{array}}$$

ie the Klein 4-group

(3) The symmetry group of an equilateral triangle, D_3 has order 6. [D stands for 'dihedral' ("having or formed by 2 planes" - although that doesn't really explain much!)] [More generally, D_n (the symmetry group of a regular *n*-sided polygon) is of order 2n: in addition to the identity element, there will be n - 1 rotations and n reflections.]

Let *I* be the identity transformation.

Let *P* be a rotation of 120° anticlockwise in the plane of the paper.

Let Q be a rotation of 120° clockwise in the plane of the paper.

Let *U*, *V* & *W* be reflections in the *U*, *V* & *W* axes respectively.

The Cayley table is found to be as follows:

(with the 1st transformation being along the top)

	Ι	Р	Q	U	V	W
Ι	Ι	Р	Q	U	V	W
Р	Р	Q	Ι	W	U	V
Q	Q	Ι	Р	V	W	U
U	U	V	W	Ι	Р	Q
V	V	W	U	Q	Ι	Р
W	W	U	V	Р	Q	Ι

The following observations can be made:

(i) The group is non-abelian.

(ii) *U*, *V* & *W* are of order 2.

(iii) $P^3 = P(P^2) = PQ = I$ and $Q^3 = Q(Q^2) = QP = I$, so that both *P* & *Q* are of order 3. And {*I*, *P*, *Q*} is a subgroup.

(Note that, whilst *U*, *V* & *W* don't appear in the section of the table with rows and columns of *I*, *P* & *Q*, the reverse isn't true: *P* & *Q* do appear in the remainder of the table.)

(4) Permutations of (1,2,3, ... *n*)

eg (for n = 5) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 2 & 1 \end{pmatrix}$ is a possible permutation.

Denoted S_n (*S* stands for symmetric - though the origin of this isn't clear).

The order is *n*! (*n* ways of choosing the 1st entry of the 2nd row,

n - 1 ways of choosing the 2nd entry etc)

(By convention, the top row is ordered.)

To find inverse permutations, simply swap the two rows and then order the top row.

For n = 3, the elements of the group are

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$a^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} = e, b^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} = e$$

$$c^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} = d, d^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} = c$$

$$f^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} = e$$

fmng.uk

$$c^{3} = c(c^{2}) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} = e , d^{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix} = e$$

All groups of order 6 are either cyclic or isomorphic to D_3 . As none of the elements has order 6, S_3 cannot be cyclic. Comparing with D_3 , and relabelling, the two elements of order 3, c & d need to be P & Q (or the other way round); noting that c & d are the cyclic permutations of (1,2,3).

Then, we can establish that af = c, so that we want a, b & f to become U, W & V, respectively (as UV = P).

$$(5)\left\{x, 1-x, \frac{1}{x}, \frac{1}{1-x}, \frac{x-1}{x}, \frac{x}{x-1}\right\}$$

under composition of functions on $x \in \mathbb{R}, x \neq 0, 1$

Let e	= x, a =	1 - x, b	$0 = \frac{1}{x}, C =$	$=\frac{1}{1-x}$, <i>d</i>	$=\frac{x-1}{x}$,	$f = \frac{x}{x-1}$
	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а	e	d	f	b	С
b	b	С	e	а	f	d
С	С	b	f	d	e	а
d	d	f	а	e	С	b
f	f	d	С	b	а	e

This group is non-abelian.

 $a^2 = e$, so *a* is of order 2

 $b^2 = e$, so *b* is of order 2

 $c^{2} = d$, $c^{3} = c(c^{2}) = cd = e$ so *c* is of order 3

[note that $c(c^2) = c(c)(c) = (c^2)c$, by associativity, so that

cd = dc (even though the group isn't abelian)]

 $d^2 = c$, $d^3 = d(d^2) = dc = e$ so d is of order 3 $f^2 = e$, so f is of order 2

Subgroups: $\{e, a\}, \{e, b\}, \{e, f\}, \{e, c, d\}$ By re-labelling, we can see that this group is isomorphic to D_3 : Rewrite *e* as *I*, *c* as *P*, *d* as *Q*, *a* as *U*, *f* as *V* & *b* as *W* (since af = c & UV = P)

(6) Symmetries of a square (order 8), with the following subgroups:

4 reflections (each of order 2)

rotation through 180 (order 2)

rotations through $90^{\circ} or - 90^{\circ}$ (each of order 4)

(C) Summaries of Results

Groups of Order 4

(1) All groups of order 4 are either cyclic or are the Klein 4-group.

(2) Cyclic groups of order 4 have the following structure:

	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b	b	С	е	а
С	С	е	а	b

Alternative form:

	е	а	a^2	<i>a</i> ³
е	е	а	a^2	a ³
а	а	<i>a</i> ²	a^3	е

<i>a</i> ²	a^2	a^3	е	а
<i>a</i> ³	a^3	е	а	a^2

The only proper subgroup is: $\{e, a^2\}$

(3) The Klein 4-group has the following structure:

	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Alternative form:

	е	а	b	ab
е	е	а	b	ab
а	а	е	ab	b
b	b	ab	е	а
ab	ab	b	а	е

(4) Both these types are abelian.

Groups of Order 6

(1) All groups of order 6 are either cyclic (and therefore abelian) or isomorphic to D_3 (symmetries of an equilateral triangle) (and therefore non-abelian).

(2) Cyclic groups of order 6 have the following proper subgroups: $\{e, a^2, a^4\}$ and $\{e, a^3\}$

(3) The D_3 group has the following structure:

	Ι	Р	Q	U	V	W
Ι	Ι	Р	Q	U	V	W
Р	Р	Q	Ι	W	U	V
Q	Q	Ι	Р	V	W	U
U	U	V	W	Ι	Р	Q
V	V	W	U	Q	Ι	Р
W	W	U	V	Р	Q	Ι

Cyclic Groups

(1) All groups of prime order are isomorphic to each other; being cyclic. Therefore they are isomorphic to $(\mathbb{Z}_n, +)$.

(2) All cyclic groups are abelian.

(3) A cyclic group of order n (whether n is prime or not) can always be created from $\{0,1,2,...,n-1\}$ under addition mod n.

(4) C_n is isomorphic to the group generated by the rotation of a plane though $\frac{2\pi}{n}$, and thus cyclic groups of all orders exist.

(5) A group of order *n* is cyclic if it contains an element of order *n*.

(6) Any subgroup of a cyclic group must also be cyclic.

(7) For each factor f of the order n of a cyclic group, there will be a subgroup of order f.

For example, the proper subgroups of the cyclic group of order 12 are: $\{e, a^2, a^4, a^6, a^8, a^{10}\}$, $\{e, a^3, a^6, a^9\}$, $\{e, a^4, a^8\}$, $\{e, a^6\}$

Abelian Groups

(1) A group that contains no elements of order greater than 2 (ie where every element is its own inverse) must be abelian.

- (2) All cyclic groups are abelian.
- (3) Klein 4-groups are abelian.
- (4) All groups of order 4 are abelian.

Subgroups

(1) Lagrange's theorem: The order of a subgroup of a finite group is a factor of the order of the group.

(2) From Lagrange's theorem, groups of prime order have no subgroups.

(3) Let *a* be an element of a group G. Then $\{a^n : n \in \mathbb{Z}\}$ is a subgroup of G (referred to as the subgroup generated by *a*). This is an easy way of finding a subgroup.

(4) If H is a non-empty subset of G, then if $ab^{-1} \in H \forall a, b \in H$, then H is a subgroup of G

(5) Any subgroup of a cyclic group must also be cyclic.

Elements of Groups

(1) The order of an element divides the order of the group.

(2) Let *a* be an element of a group G. Then $\{a^n : n \in \mathbb{Z}\}$ is a subgroup of G (referred to as the subgroup generated by *a*). This is an easy way of finding a subgroup.

(3) If g is a generator of a group, then g^{-1} will be also.

(4) If g is a generator of a group of order n, then g^k will be also if and only if k and n are co-prime (ie have no common factors).

(5) Every element of a group of prime order is a generator of the group.

Isomorphisms

(1) All groups of prime order are isomorphic to each other; being cyclic. Therefore they are isomorphic to $(\mathbb{Z}_n, +)$.

(2) Groups of order 4 are either cyclic, or have 3 elements of order 2 (the Klein 4-group).

(3) Cayley's theorem: Any group of order n is isomorphic to a subgroup of S_n (the group of permutations of (1,2,3,...,n)).

Order	Cyclic?	Abelian?	Proper Subgroups?	Notes
4	Y	Y	Y	C_4
4	Ν	Y	Y	Klein 4-group
6	Y	Y	Y	C_6
6	Ν	Ν	Y	D_3 , S_3
Prime, p	Y	Y	N	C_p
Non-prime, n	Y	Y	Y	C_n
Non-prime, <i>n</i>	N	Y/N	Y/N	

(D) Table of possibilities