Graphs - Q8: Transformations [Problem/M](20/6/21)

(i) Suppose that we wish to reflect $y=f(x)$ in the line $x=a$. What combination of transformations could be used to do this?
(ii) Find the equation of the line resulting from the reflection of $y=2 x+1$ in the line $x=1$.

Solution

(i) A particular point can be reflected in the line $x=a$ by considering a translation of a to the left, then performing a reflection in the y-axis and translating everything back, by a to the right.

In mathematical terms, x is first of all replaced by $x+a$; then x is replaced by $-x$, and finally x is replaced by $x-a$ (see note below).

Thus $f(x) \rightarrow f(x+a) \rightarrow f(-x+a) \rightarrow f(-[x-a]+a)=$ $f(2 a-x)$
[As an aid to memory, consider the reflection of $y=\sin x$ about $x=\frac{\pi}{2}$, which is $\left.y=\sin (\pi-x)\right]$

Alternative approach: $f(2 a-x)$ can be justified by observing that when a point is reflected in the line $x=a$, its x coordinate changes from being x to the right of O (in the case where $x>0$) to being x to the left of $2 a$ (as in the example of $y=\sin x$). See diagram below.

Note: An important point to observe when carrying out composite transformations is that, at any stage of the process, only the following operations are allowed: replacing x with $x+a$ (where a can be negative), or replacing x with $k x$ (where k can be negative).

For example, if we want to stretch $y=\sin \left(x+30^{\circ}\right)$ by a scale factor 2 in the x-direction, then the point $\left(x, \sin \left(x+30^{\circ}\right)\right)$ is moving to $\left(2 x, \sin \left(x+30^{\circ}\right)\right.$). Making the substitution $u=2 x$, the coordinates of this point on the new curve are

$$
\begin{aligned}
& \left(u, \sin \left(\frac{u}{2}+30^{\circ}\right)\right) \text {, and re-labelling, to give } y \text { as a function of } x \\
& \text { (rather than } u) \text {, we have } y=\sin \left(\frac{x}{2}+30^{\circ}\right)
\end{aligned}
$$

Alternatively (going the other way): the graph of $y=\sin \left(\frac{x}{2}+30^{\circ}\right)$ can be obtained as follows: we want the curve with coordinates $\left(x, \sin \left(\frac{x}{2}+30^{\circ}\right)\right)$. This can be obtained from the curve with coordinates $\left(x, \sin \left(x+30^{\circ}\right)\right)$ by 'looking to the left' of x, to find the point $\left(\frac{x}{2}, \sin \left(\frac{x}{2}+30^{\circ}\right)\right)$, and then dragging it back to the right, to give $\left(x, \sin \left(\frac{x}{2}+30^{\circ}\right)\right)$ [see diagram below]. (Note that, as this transformation is a stretch, the amount of dragging will depend on the distance from the Origin.) The dragging to the right explains why we see the curve stretching outwards (even though x is being replaced by $\frac{x}{2}$). A similar argument applies in the case of translations (though here the amount of dragging is the same for all points).

(ii) The transformed line is $y=2(2-x)+1=5-2 x$

Check: The transformed line will pass through the point where $y=2 x+1$ meets the line $x=1$; ie at $(1,3)$, and will have a gradient of -2 ; hence its equation is $\frac{y-3}{x-1}=-2$ etc

