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Numerical Solution of Equations - Fixed Point Iteration 

(16 pages; 27/3/20) 

 

(1) Suppose that we wish to solve the equation 𝑥 = 𝑔(𝑥) 

approximately. 

Let our first estimate be 𝑥0, and let 𝑥1 = 𝑔(𝑥0), 𝑥2 = 𝑔(𝑥1)  etc. 

If it happens that the sequence of 𝑥𝑟 converges on a particular 

value 𝛼, then 𝛼 = g(𝛼) and 𝛼 will be a solution of the equation. 

 

(2) If we wish to solve the equation  𝑥3 − 𝑥 = 1  numerically, it 

can be rearranged into the following forms (for example): 

(A)  𝑥 =  𝑥3 − 1 

(B)  𝑥 =  √𝑥 + 1
3

  

(C)  𝑥 =
1

𝑥
+

1

𝑥2    

(by dividing the original equation by 𝑥2 to give   𝑥 −  
1

𝑥
=  

1

𝑥2  )  

 

(3) The iterations can be carried out by calculator. 

We need to find a suitable starting point 𝑥0. To do this we can 

employ the Change of Sign method, for example; demonstrating 

(with a bit of trial and error) that for 𝑓(𝑥) = 𝑥3 − 𝑥 − 1,  𝑓(1) < 0  

and 𝑓(2) > 0, so that a solution lies between 1 and 2. Note that 

other solutions may exist elsewhere. 

So let 𝑥0 = 1, say. 

For most Casio models, type in the following for (B): 
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1 = ANS DEL 

(𝐴𝑁𝑆 + 1)1/3  

= [repeatedly] 

 

The iterations are as follows (to 5dp), with the results shown for 

(A) and (C) as well: 

(A) (B) (C) 
1 1 1 
0 1.25992 2 
-1 1.31229 0.75 
-2 1.32235 3.11111 
-9 1.32427 0.42475 
-730 1.32463 7.89734 
 1.32470 0.14266 
 1.32472 56.14607 
 1.32472  
 

Thus only (B) converges. 

 

(4) The diagram below shows the graphs of  𝑦 = 𝑥3 − 𝑥 − 1 

(crossing the 𝑥-axis at 1.32472), 𝑦 =  √𝑥 + 1
3

  (in green) 

and 𝑦 = 𝑥. 
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Note that the graphs of  𝑦 =  √𝑥 + 1
3

   and 𝑦 = 𝑥   intersect at 

 𝑥 = 1.32472, corresponding to the solution of  𝑥 = 𝑔(𝑥)  for (B). 

 

(5) The diagram below shows how the iterations for (B) approach 

𝛼 = 1.32472  

Starting with 𝑥 = 𝑥0, we obtain 𝑥1 = 𝑔(𝑥0) by following the 

vertical line up to the curve 𝑦 = 𝑔(𝑥); 𝑥1 is then the 𝑦-coordinate 

of the point reached; this is then turned into a point on the 𝑥-axis 

by following the horizontal line along to the line 𝑦 = 𝑥; the 

𝑥-coordinate of the point reached is  𝑥1 = 𝑔(𝑥0); the process is 

then repeated to find 𝑥2 etc (though the vertical lines don't need 

to start on the 𝑥-axis). 
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For this particular series of iterations, the 𝑥𝑟 approach 𝛼 from 

below in a 'staircase' fashion. 

 

 

(6) We will now show that the convergence (or otherwise) of 

iterations of  𝑥 = 𝑔(𝑥) depends on the value of 𝑔′(𝛼). 

From the diagram in (5), provided that 𝑥𝑟 is reasonably close to 𝛼, 
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 𝑔′(𝛼) ≈
𝑔(𝛼)−𝑔(𝑥𝑟)

𝛼−𝑥𝑟
=

𝛼−𝑔(𝑥𝑟)

𝛼−𝑥𝑟
=

𝑔(𝑥𝑟)−𝛼

𝑥𝑟−𝛼
    (1), 

using the fact that 𝛼 is a solution of 𝑥 = 𝑔(𝑥), so that 𝛼 = 𝑔(𝛼). 

 

Let 𝑒𝑟 =  𝑥𝑟 − 𝛼  be the ‘error’ associated with 𝑥𝑟 . 

[Note: some textbooks define 𝑒𝑟   as  𝛼 − 𝑥𝑟] 

Then  𝑒𝑟+1 =  𝑥𝑟+1 − 𝛼 = 𝑔(𝑥𝑟) − 𝛼   ≈ 𝑔′(𝛼) (𝑥𝑟 − 𝛼),   from (1) 

Thus  𝑒𝑟+1 ≈ 𝑔′(𝛼) . 𝑒𝑟  

This is an example of what is termed 1st order convergence, 

where each error term is proportional to the previous error term. 

 

So, if the error is supposed to be getting smaller, we want 

|𝑔′(𝛼)| < 1 (and the smaller the better). 

 

Referring to the diagram in (5), we can see whether 𝑔′(𝛼) < 1, by 

comparing the slopes of  𝑦 = 𝑔(𝑥) and 𝑦 = 𝑥 at 𝑥 = 𝛼. By 

imagining the line perpendicular to 𝑦 = 𝑥 at 𝑥 = 𝛼, we can 

establish whether 𝑔′(𝛼) > −1. 

In the case of (B) above,  0 < 𝑔′(𝛼) < 1, so that each error 𝑒𝑟  is 

smaller than the previous one, and of the same sign. This gives 

rise to the staircase pattern. 

In cases where −1 < 𝑔′(𝛼) < 0, the signs of the errors alternate, 

and a 'cobweb' pattern is obtained, as shown below. 
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An example of this occurs for the solution of   𝑥3 + 𝑥 − 1 = 0, 

when  𝑔(𝑥) = √1 − 𝑥
3

 , as shown below: 
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(7) The above condition for convergence can be applied without 

having to draw any graphs, if we have a rough estimate of the 

solution. 

Thus, for the rearrangements (A), (B) and (C), we can obtain 

𝑔′(1), for example. The accurate figure of 𝑔′(1.32472) is also 

shown, for comparison. 

(A): 𝑔′(𝑥) = 3𝑥2 ⇒ 𝑔′(1) = 3  &  𝑔′(1.32472) = 5.26  

(B): 𝑔′(𝑥) = 
1

3
 (𝑥 + 1)−

2

3 ⇒ 𝑔′(1) = 0.21  &  𝑔′(1.32472) = 0.19 

(C): 𝑔′(𝑥) = −𝑥−2 − 2𝑥−3 ⇒ 𝑔′(1) = −3  &  𝑔′(1.32472) = −1.43 

Thus, in the case of (B), the fact that −1 < 0.21 < 1 strongly 

suggests convergence, whilst convergence is very unlikely in the 

cases of (A) and (C). 
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(8) The fixed point method provides an automatic interval for the 

solution where −1 < 𝑔′(𝛼) < 0; namely  (𝑥𝑟−1, 𝑥𝑟) or (𝑥𝑟 , 𝑥𝑟−1), 

depending on whether 𝑥𝑟−1 < 𝑥𝑟 . 

In order to obtain an interval for cases where   0 < 𝑔′(𝛼) < 1, we 

take 𝑥𝑟 as one of the bounds (lower or upper, depending on 

whether  𝑥𝑟 < 𝛼) and then estimate a suitable value for the other 

bound, checking it by the Change of Sign method. 

Thus for (B) above, we could take 1.324 as the lower bound, and 

1.325, as 𝑓(1.324) = 1.3243 − 1.324 − 1 = −0.0031 < 0 and 

𝑓(1.325) = 1.3253 − 1.325 − 1 = 0.0012 > 0 

 

(9) Number of iterations needed 

For (B), with 𝑥0 = 1,  it is clear after a few iterations that 

𝛼 ≈ 1.32,  so that 𝑒0 ≈ 1 − 1.32 = −0.32 

Also 𝑔′(1.32) = 0.19 (2𝑑𝑝)  and  𝑒𝑟+1 ≈ 𝑔′(𝛼) . 𝑒𝑟  , 

so that 𝑒𝑟 ≈ −0.32(0.19)𝑟      

Thus, if 𝑟 = 8, 𝑒𝑟 ≈ −5 × 10−7 

The actual value of  𝑒𝑟  is  1.324715 − 1.324717957 

= −3 × 10−6 (6dp), so the approximation is not especially good. 

If we want to find the approximate number of iterations needed in 

order to achieve a particular level of error, then we can take logs. 

Thus, to achieve an error of approximately  −5 × 10−6 (giving an 

answer approximately correct to 5dp): 

−5 × 10−6 = −0.32(0.19)𝑟  

⇒ 1.5625 × 10−5 = (0.19)𝑟  

⇒ 𝑙𝑜𝑔10(1.5625) − 5 = 𝑟𝑙𝑜𝑔10(0.19)  
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⇒ 𝑟 = 6.7  

ie 7 iterations will be required. 

 

(10) Quick way of estimating 𝛼 

As 𝑒𝑟+1 ≈ 𝑔′(𝛼) . 𝑒𝑟 , 

𝑥𝑟+1 − 𝛼 ≈ 𝑔′(𝛼)(𝑥𝑟 − 𝛼) 

Then , given 𝑥𝑟 & 𝑥𝑟+1,  𝛼 can be found approximately if an 

estimate of 𝑔′(𝛼) is available. 

To find 𝑔′(𝛼): 

(a) base on an estimate of 𝛼  (as in (9)) 

or (b) find an approximation to the gradient at 𝛼: 

𝑔′(𝛼) ≈
𝑔(𝑥𝑟+1)−𝑔(𝑥𝑟)

𝑥𝑟+1−𝑥𝑟
=

𝑥𝑟+2−𝑥𝑟+1

𝑥𝑟+1−𝑥𝑟
    

This is referred to as the 'ratio of differences', and a more 

accurate value for  𝑔′(𝛼) can be obtained by increasing 𝑟. 

 

𝑥𝑟   for (B) 𝑥𝑟+1 − 𝑥𝑟  𝑥𝑟+2 − 𝑥𝑟+1

𝑥𝑟+1 − 𝑥𝑟
 

1 0.259921  
1.25992 0.052373 0.201495 
1.31229 0.010060 0.192084 
1.32235 0.001915 0.190351 
1.32427 0.000364 0.190023 
1.32463 0.000069 0.189961 
1.32470 0.000013 0.189950 
1.32472 0.000002  
1.32472   
 

The ratio of differences can of course be presented in the form 
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𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
  instead (where the value of 𝑟 has been increased by 1). 

 

(11) Alternative derivation of the ratio of differences result: 

𝑥𝑟 = 𝛼 + 𝑒𝑟    and   𝑒𝑟 ≈ 𝑘𝑒𝑟−1  

𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
=

(𝛼+𝑒𝑟+1)−(𝛼+𝑒𝑟)

(𝛼+𝑒𝑟)−(𝛼+𝑒𝑟−1)
  

=
𝑒𝑟+1−𝑒𝑟

𝑒𝑟−𝑒𝑟−1
=

𝑘𝑒𝑟−𝑒𝑟

𝑘𝑒𝑟−1−𝑒𝑟−1
  

=
(𝑘−1)𝑒𝑟

(𝑘−1)𝑒𝑟−1
≈ 𝑘  

ie  
𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
≈ 𝑘  

 

(12) What if 𝑔′(𝛼) = 0? 

𝑒𝑟+1 ≈ 𝑔′(𝛼) . 𝑒𝑟   becomes 𝑒𝑟+1 ≈ 0, which isn't very helpful. 

𝑔′(𝛼) ≈
𝑔(𝛼)−𝑔(𝑥𝑟)

𝛼−𝑥𝑟
  can be written as 

𝑔(𝑥𝑟) ≈ 𝑔(𝛼) + 𝑔′(𝛼)(𝑥𝑟 − 𝛼)   (A) 

Referring to the diagram below, an approximate value for 𝑔(𝑥𝑟) is 

obtained by adding 𝑡𝑎𝑛𝜃(𝑥𝑟 − 𝛼) to 𝑔(𝛼), where  𝑡𝑎𝑛𝜃 = 𝑔′(𝛼) 

[in this case, it gives an underestimate] 
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(A) gives the first two terms of the Taylor expansion of 𝑔(𝑥𝑟)  

about 𝛼 

The 3rd term is 𝑔′′(𝛼)
(𝑥𝑟−𝛼)2

2!
 

Then if  𝑔′(𝛼) = 0, 

𝑔(𝑥𝑟) ≈ 𝑔(𝛼) + 𝑔′′(𝛼)
(𝑥𝑟−𝛼)2

2!
  

so that  𝑒𝑟+1 = 𝑥𝑟+1 − 𝛼 = 𝑔(𝑥𝑟) − 𝑔(𝛼) ≈
1

2
𝑔′′(𝛼)𝑒𝑟

2  (B) 

Thus each error term is proportional to the square of the previous 

error term. This is referred to as quadratic or 2nd order 

convergence. 

From (B), if  𝑔′′(𝛼)>0, the errors after 𝑒0 will all be positive; ie 

giving a staircase pattern. If 𝑔′′(𝛼)<0, the errors after 𝑒0 will all 

be negative; again giving a staircase pattern. 
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(13) Relaxed iteration 

Consider  ℎ(𝑥) = (1 − 𝜆)𝑥 + 𝜆𝑔(𝑥) 

ℎ(𝛼) = (1 − 𝜆)𝛼 + 𝜆𝑔(𝛼) = (1 − 𝜆)𝛼 + 𝜆𝛼 = 𝛼  

Thus, ℎ(𝑥) fulfills the same role as 𝑔(𝑥) and, with a suitable 𝜆, it 

may be possible to convert an unfavourable 𝑔(𝑥) , where there 

isn't convergence, to a favourable ℎ(𝑥), where there is 

convergence. Where there is already convergence for 𝑔(𝑥), it may 

be possible to obtain faster convergence with ℎ(𝑥). 

A spreadsheet can be used to do this, as shown below (with 𝑘 

instead of 𝜆).  

 

Alternatively, suppose that we are able to estimate 𝛼, and hence 

calculate 𝑔′(𝛼) approximately. 
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Then  ℎ′(𝛼) = 0 ⇒ (1 − 𝜆) + 𝜆𝑔′(𝛼) = 0 

⇒ 𝜆(𝑔′(𝛼) − 1) = −1  

⇒ 𝜆 =
1

1−𝑔′(𝛼)
  

For example, we can consider the three earlier rearrangements of  

𝑥3 − 𝑥 = 1, and assume that it is known that a root lies between 1 

and 2, with 𝑥0 = 1.   

(A)  𝑥 = 𝑥3 − 1 ; 𝑔′(1) = 3;  𝜆 =
1

1−𝑔′(1)
= −0.5 

(B)  𝑥 = √𝑥 + 1
3

 ;  𝑔′(1) = 0.21; 𝜆 =
1

1−𝑔′(1)
= 1.26582                                                             

(C) 𝑥 =
1

𝑥
+

1

𝑥2  ;  𝑔′(1) = −3;  𝜆 =
1

1−𝑔′(1)
= 0.25 

 

Convergence, or otherwise, of ℎ(𝑥) can now be investigated for 

the calculated value of 𝜆, using a spreadsheet: 
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As can be seen, the calculated values of 𝜆 are effective for (B) and 

(C), but not for (A). In the case of (B), there was already 

convergence with 𝑔(𝑥), but ℎ(𝑥) gives a faster convergence. In the 

case of (C), there previously wasn't any convergence. 

 

For (A), the situation can be improved by taking the average of 

𝑔′(1) = 3 and 𝑔′(2) = 12 (as the root lies between 1 and 2). 

Then we can take  𝜆 =
1

1−
1

2
(3+12)

= −0.28571 
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This gives the following convergence: 

 

 

(14) Exercise:  Define  ℎ(𝑥) ≡ 𝜆𝑔(𝑥) + (1 − 𝜆)𝑥  

Show that 𝑔(𝛼) = 𝛼 ⇔ ℎ(𝛼) = 𝛼, provided one condition is met, 

and state that condition. 

Solution 

𝑔(𝛼) = 𝛼 ⇒ ℎ(𝛼) = 𝜆𝑔(𝛼) + (1 − 𝜆)𝛼  

= 𝜆𝛼 + (1 − 𝜆)𝛼 = 𝛼  

and ℎ(𝛼) = 𝛼 ⇒ 𝜆𝑔(𝛼) + (1 − 𝜆)𝛼 = 𝛼 

⇒ 𝜆(𝑔(𝛼) − 𝛼) = 0  

⇒ 𝑔(𝛼) = 𝛼 , provided 𝜆 ≠ 0 

[If 𝜆 = 0, then ℎ(𝑥) ≡ 𝑥, so that ℎ(𝛼) = 𝛼 is always true.] 

 

(15) Exercise: By employing the relaxed iteration 

ℎ(𝑥) = 𝜆𝑔(𝑥) + (1 − 𝜆)𝑥 , where 𝑔(𝑥) = 𝑥3 − 1, with a suitable 

value of 𝜆, find the root of the equation 
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 𝑥3 − 𝑥 − 1 = 0 that lies between 1.3 and 1.4, to 4 d.p. 

Solution 

Let 𝛼 be the required root. 

 𝑔(𝑥) = 𝑥3 − 1 ⇒ 𝑔′(𝑥) = 3𝑥2  

𝛼 ≈ 1.3 and 𝑔′(1.3) = 5.07 

Let  𝜆 =
1

1−5.07
= −0.2457 

Then  ℎ(𝑥) = −0.2457(𝑥3 − 1) + 1.2457𝑥 

and with 𝑥𝑟+1 = −0.2457(𝑥𝑟
3 − 1) + 1.2457𝑥𝑟  and  𝑥0 = 1.3, 

𝑥1 = 1.32531,   

𝑥2 = 1.32469, 

𝑥3 = 1.32472,  

𝑥4 = 1.32472  

so that the root is 1.3247 (4 d.p.) 

 


