First Order Differential Equations (3 pages; 23/2/19)

(1) A differential equation is first order if it doesn't involve any derivatives higher than the first.

(2) The equation $\frac{dy}{dx} = f(x)$ wouldn't usually be described as a differential equation, as it can easily be solved (in principle) by integrating f(x).

Separation of Variables

(3) In general, the equation $\frac{dy}{dx} = f(x)g(y)$ is solved by rearranging (informally) as follows: $\frac{dy}{g(y)} = f(x)dx$, which then gives $\int \frac{1}{g(y)} dy = \int f(x)dx$ [a more rigorous proof exists, but at A Level the result can be assumed]

(4) Example:
$$\frac{dP}{dt} = kP \ (k > 0)$$

 $\frac{dP}{P} = kdt$, so that $\int \frac{1}{P} dP = k \int dt$,
and hence $lnP = kt + C$,
giving $P = e^{(kt+C)}$ or Ae^{kt} , where $A = e^{C}$
Then, if $P = P_0$ when $t = 0, A = P_0$, so that $P = P_0 e^{kt}$

(5) Note that $\frac{dy}{dx} = x + y$, for example, cannot be dealt with by the method of Separation of Variables. (An integrating factor can

be used however, as described below. See also "Differential Equations - Substitutions".)

Integrating Factors

(6) A differential equation is referred to as 'linear' if the dependent variable (often *y*) only appears to the 1st power.

(7) A first order linear equation can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x) \quad (A)$$

Multiplication by an integrating factor, R(x) enables the left-hand side to be written in the form

$$\frac{d}{dx}(R(x)y) = R(x)\frac{dy}{dx} + \frac{dR(x)}{dx}.y$$

We therefore require $\frac{dR(x)}{dx} = R(x)P(x)$,

so that $\int \frac{1}{R(x)} dR(x) = \int P(x) dx$ and hence $lnR(x) = \int P(x) dx$ and $R(x) = \exp\{\int P(x) dx\}$

(8) On multiplying by
$$R(x)$$
, (A) becomes
 $\frac{d}{dx}(R(x)y) = R(x)Q(x)$,
so that $R(x)y = \int R(x)Q(x)dx$

(9) In some cases, the left-hand side can be easily rearranged into the form $R(x)\frac{dy}{dx} + \frac{dR(x)}{dx}$. *y*

Example 1: $sinx \frac{dy}{dx} + secx.y$ Dividing by cosx gives $tanx \frac{dy}{dx} + sec^2x.y = \frac{d}{dx}(tanx.y)$ Example 2: $\frac{dy}{dx} + tanx.y$ Multiplying by secx gives $secx \frac{dy}{dx} + secxtanx.y = \frac{d}{dx}(secx.y)$ Example 3: $tanx \frac{dy}{dx} + y$ Multiplying by cosx gives $sinx \frac{dy}{dx} + cosx.y = \frac{d}{dx}(sinx.y)$ Example 4: $cosx \frac{dy}{dx} - cosecx.y$ Dividing by sinx gives $cotx \frac{dy}{dx} - cosec^2x.y = \frac{d}{dx}(cotx.y)$

(10) Note the standard pattern $\frac{dy}{dx} + \frac{k}{x}y$ ($k \in \mathbb{R}$) for the lefthand side, where the integrating factor will be x^k