(1) A differential equation is first order if it doesn't involve any derivatives higher than the first.
(2) The equation $\frac{d y}{d x}=f(x)$ wouldn't usually be described as a differential equation, as it can easily be solved (in principle) by integrating $f(x)$.

Separation of Variables

(3) In general, the equation $\frac{d y}{d x}=f(x) g(y)$ is solved by rearranging (informally) as follows: $\frac{d y}{g(y)}=f(x) d x$, which then gives $\int \frac{1}{g(y)} d y=\int f(x) d x$ [a more rigorous proof exists, but at A Level the result can be assumed]
(4) Example: $\frac{d P}{d t}=k P(k>0)$
$\frac{d P}{P}=k d t$, so that $\int \frac{1}{P} d P=k \int d t$, and hence $\ln P=k t+C$, giving $P=e^{(k t+C)}$ or $A e^{k t}$, where $A=e^{C}$

Then, if $P=P_{0}$ when $t=0, A=P_{0}$, so that $P=P_{0} e^{k t}$.
(5) Note that $\frac{d y}{d x}=x+y$, for example, cannot be dealt with by the method of Separation of Variables. (An integrating factor can
be used however, as described below. See also "Differential Equations - Substitutions".)

Integrating Factors

(6) A differential equation is referred to as 'linear' if the dependent variable (often y) only appears to the 1 st power.
(7) A first order linear equation can be written in the form
$\frac{d y}{d x}+P(x) y=Q(x)$
Multiplication by an integrating factor, $R(x)$ enables the left-hand side to be written in the form
$\frac{d}{d x}(R(x) y)=R(x) \frac{d y}{d x}+\frac{d R(x)}{d x} . y$
We therefore require $\frac{d R(x)}{d x}=R(x) P(x)$,
so that $\int \frac{1}{R(x)} d R(x)=\int P(x) d x$
and hence $\ln R(x)=\int P(x) d x$
and $R(x)=\exp \left\{\int P(x) d x\right\}$
(8) On multiplying by $R(x)$, (A) becomes
$\frac{d}{d x}(R(x) y)=R(x) Q(x)$,
so that $R(x) y=\int R(x) Q(x) d x$
(9) In some cases, the left-hand side can be easily rearranged into the form $R(x) \frac{d y}{d x}+\frac{d R(x)}{d x} \cdot y$

Example 1: $\sin x \frac{d y}{d x}+\sec x . y$
Dividing by $\cos x$ gives $\tan x \frac{d y}{d x}+\sec ^{2} x \cdot y=\frac{d}{d x}(\tan x . y)$
Example 2: $\frac{d y}{d x}+\tan x . y$
Multiplying by secx gives $\sec x \frac{d y}{d x}+\sec x \tan x . y=\frac{d}{d x}(\sec x . y)$
Example 3: $\tan x \frac{d y}{d x}+y$
Multiplying by $\cos x$ gives $\sin x \frac{d y}{d x}+\cos x . y=\frac{d}{d x}(\sin x . y)$
Example 4: $\cos x \frac{d y}{d x}-\operatorname{cosec} x . y$
Dividing by $\sin x$ gives $\cot x \frac{d y}{d x}-\operatorname{cosec}^{2} x . y=\frac{d}{d x}(\cot x . y)$
(10) Note the standard pattern $\frac{d y}{d x}+\frac{k}{x} y \quad(k \in \mathbb{R})$ for the lefthand side, where the integrating factor will be x^{k}

