A Level \& Further Maths Topics by Exam Board - Mechanics (8 pages; 9/7/21)

A Level

M: material common to AS and AL
M^{*} : material for 2nd year of AL only
Further Maths
OCR
M: material common to AS and AL
M^{*} : material for 2nd year of AL only
OCR B (MEI)
Mechanics a [Ma] ('minor'; 1st half of 'major') [can be taken at either AS and AL]
Mechanics b [Mb] (2nd half of 'major') [can be taken at either AS and AL]
AQA
M: material common to AS and AL
M*: material for 2nd year of AL only

Note: AQA specifications don't give any guidance, but there are useful notes for OCR, MEI \& EDX, which can sometimes be referred to.

EDX
M1: material common to AS
M1*: material for 2nd year of AL only
M2: material common to AS
M2*: material for 2nd year of AL only

	fmng reference (Y= note exists)	OCR	OCR B (MEI)	AQA	EDX
Introduction					
terminology associated with simplifying assumptions		M			
SI units		M	M	M	M
derived quantities		M	M	M	M
particle model		M			
Centre of Mass		M^{*}	Ma	M	M 2
Introduction		M^{*}	Ma	M	M 2
Triangular lamina		M^{*}	Ma	M	$\mathrm{M} 2^{*}$
Composite plane figure					
Composite rigid body		M^{*}	Mb	M^{*}	$\mathrm{M} 2^{*}$
Use of integration			Mb	M^{*}	
- lamina		M^{*}	Ma	M^{*}	$\mathrm{M} 2^{*}$
- solid of revolution		M^{*}	Ma	M^{*}	$\mathrm{M} 2^{*}$
- non-uniform body					
Suspension from point					
Toppling / sliding					

Circular Motion	Y				
Uniform circular motion					
Introduction		M	Mb	M	M 2
Conical pendulum		M	Mb	M^{*}	M 2
Banked track			Mb		M 2
Motion in a vertical circle	M	Mb	M^{*}	M^{*}	
Use of energy methods		M^{*}	Mb	M^{*}	M^{*}
Use of components of acceleration		M^{*}	Mb		
Motion involving freefall					
Oscillations	see Pure	see Pure	see Pure	$\mathrm{M} 2^{*}$	
SHM					
			M	Ma	M
Dimensional analysis				M	
Energy, Work \& Power		M		M	M 1
Energy	Energy				
KE \& PE					
use of scalar product			M	Ma	M
Work			M 1		
Introduction					

2D force		M^{*}			
Variable force		Y	M^{*}		M
Hooke's law					
Introduction	Energy	M^{*}	Mb	M	$\mathrm{M} 1^{*}$
Elastic PE		Mb	M	M^{*}	
Conservation of energy	M	Ma	M	M 1	
Introduction	M	Ma		M 1	
Work-energy principle		M	Ma		
Power		M	Ma	M	M 1
Average power		M^{*}			M 1
$P=$ Fv					
Variable resistance		M	M	assumed	assumed
use of scalar product		M	M	M	M
Forces		M	M	M	
Force diagrams		M			
Newton's 1st law		M	M	M	M
Newton's 2nd law		M	M	M	M
Situations where forces need to be resolved					
Gravity \& weight					
Newton's 3rd law					

connected particles		M	M	M	M
smooth pulleys		M	M	M	M
Use of polygon of forces	M	M			
Resultants of forces	M^{*}	$\mathrm{M}_{\mathbf{\prime}} \mathrm{M}^{*}$	M^{*}	M^{*}	
Equilibrium of particle	M	$\mathrm{M}, \mathrm{M}^{*}$, Ma	M	M	
Equilibrium of rigid body in plane (moments)		$\mathrm{M}^{*}, \mathrm{M}^{*}$	$\mathrm{M}^{*}, \mathrm{Ma}$	$\mathrm{M}^{*}, \mathrm{M}^{*}$	$\mathrm{M}^{*}, \mathrm{M} 2$
Friction	Y	M			
Introduction	M^{*}	M^{*}	M^{*}		
components of contact force: normal \& friction		M^{*}	$\mathrm{M}^{*}, \mathrm{Ma}$	M^{*}	M^{*}
Coeff. of friction			Ma		
Vectors	M	Ma	M	M 1	
Impulse \& Momentum	M^{*}		M	$\mathrm{M} 1^{*}$	
 conservation of momentum - 1D		M^{*}		M	
 conservation of momentum - 2D					
Impulse-momentum eq'n, with variable force (1D)					

Direct impact of spheres (incl. coeff. of rest.)		M	Ma	M	M 1
Impact of sphere on level plane		M	Ma	M	M 1
Oblique impact of sphere on plane	Oblique impact with plane	M^{*}	Mb	M ?	M^{*}
Oblique impact of spheres	Oblique impacts	M^{*}	Mb		$\mathrm{M} 1^{*}$
Kinematics					
terminology		M	M	M	M
displacement-time graphs		M	M	M	M
velocity-time graphs		M	M	M	M
accel-time graphs		M	M	M	
suvat eq'ns				M	
- derivation: (i) integration (ii) graphs (iii) other suvat eq'ns		M^{*}	M		
2D vector form of suvat eq'ns		M^{*}	M, Mb	M	M^{*}
Use of calculus					

Finding cartesian eq'n of path from vector components of position			M^{*}		
Velocity vector giving direction of motion		M^{*}	M^{*}		
Projectiles	Y	M^{*}	$\mathrm{M}^{*}, \mathrm{Mb}$	M^{*}	M^{*}

