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Eigenvectors (10 pages; 4/9/18) 

 

(1) Finding eigenvalues & eigenvectors 

(i) Introduction 

Eigenvectors are invariant lines through the Origin; ie where a 

transformation maps a point onto another point on the line. 

If  T𝑥 =  𝜆𝑥  then 𝑥 is termed an eigenvector of  the matrix T, with 

𝜆 being the eigenvalue. 

Interpreting 𝑥  as a position vector (ie anchored at the origin),  

𝜆𝑥  has the same direction as 𝑥 ; 𝑥  has been magnified by 𝜆 

It is assumed that  𝑥  is non-zero. 

If the eigenvalue is 𝜆 = 1, then we have found a line of invariant 

points. 

(ii) Example 

To find the eigenvalues and eigenvectors for T = (
1 1 −1
0 1 0

−1 0 1
) 

Step 1: Find the eigenvalues 

T𝑥 =  𝜆𝑥 = 𝜆𝐼𝑥  ⇒ (𝑇 − 𝜆𝐼)𝑥 = 0 

We require there to be more than one solution to this equation 

(𝑥 = 0 and a non-zero solution). Hence |𝑇 − 𝜆𝐼| = 0 

ie  |
1 − 𝜆 1 −1

0 1 − 𝜆 0
−1 0 1 − 𝜆

| = 0  (the 'characteristic equation') 

⇒ (1 − 𝜆)(1 − 𝜆)(1 − 𝜆) − 0 − 1(1 − 𝜆) = 0  
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⇒ −𝜆3 + 3𝜆2 − 3𝜆 + 1 − 1 + 𝜆 = 0  

⇒ 𝜆(𝜆2 − 3𝜆 + 2) = 0  

⇒ 𝜆(𝜆 − 1)(𝜆 − 2) = 0     

⇒ 𝜆 = 0,  1 or 2  

Step 2: Find the corresponding eigenvectors 

(
1 − 𝜆 1 −1

0 1 − 𝜆 0
−1 0 1 − 𝜆

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

𝜆 = 0 ⇒ (
1 1 −1
0 1 0

−1 0 1
) (

𝑥
𝑦
𝑧

) = (
0
0
0

) 

⇒ 𝑦 = 0; 𝑥 − 𝑧 = 0  

eg (
1
0
1

)  

Notes 

(a) Any multiple of this vector is an eigenvector with eigenvalue 

0. 

(b) Alternative layout:  (
1 1 −1
0 1 0

−1 0 1
) (

𝑥
𝑦
𝑧

) = 𝜆 (
𝑥
𝑦
𝑧

) 

 

The eigenvector corresponding to 𝜆 = 1 is given by: 

(
1 − 1 1 −1

0 1 − 1 0
−1 0 1 − 1

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

⇒ 𝑦 − 𝑧 = 0; −𝑥 = 0  
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⇒ eigenvector of (
0
1
1

) 

The eigenvector corresponding to 𝜆 = 2 is given by: 

(
1 − 2 1 −1

0 1 − 2 0
−1 0 1 − 2

) (
𝑥
𝑦
𝑧

) = (
0
0
0

)  

⇒ −x + y − z = 0; −y = 0  ⇒ eigenvector of (
1
0

−1
)   

Note that the last equation [−𝑥 − 𝑧 = 0] is consistent with the 

first two; ie finding the eigenvectors provides an automatic check 

on the eigenvalues. 

Thus  the eigenvectors of T are  (
1
0
1

)  , (
0
1
1

) & (
1
0

−1
)   

(with eigenvalues of 0, 1 & 2 respectively) 

Note that (
1
0

−1
)  could be written as  (

−1
0
1

)  instead, for example. 

In general, (
𝑎

−𝑏
−𝑐

) is sometimes preferred to (
−𝑎
𝑏
𝑐

) (where 𝑎, 𝑏 & 𝑐 

are positive). 

So, for this example, any position vector of the form 𝑘 (
1
0

−1
) is 

transformed to 2𝑘 (
1
0

−1
) 
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𝑘 (
1
0

−1
) represents an invariant line (note that the points on the 

line transform to other points on the line); 

Its cartesian equation is found as follows: 

(
𝑥
𝑦
𝑧

) = 𝑘 (
1
0

−1
) , so that 𝑘 = 𝑥 = −𝑧 

ie the cartesian equation is 𝑥 = −𝑧, 𝑦 = 0 

 

Note: There may be other invariant lines, not passing through the 

origin. 

As position vectors of the form 𝑘 (
0
1
1

)  transform to 𝑘 (
0
1
1

), this 

represents a line of invariant points (where the eigenvalue is 1), 

with cartesian equation  𝑦 = 𝑧, 𝑥 = 0 (from the earlier equations). 

 

(iii) Example:  Find the eigenvalues & eigenvectors of the matrix 

(
4 2
1 3

) 

Solution: |
4 − 𝜆 2

1 3 − 𝜆
| = 0 

⇒ (4 − 𝜆)(3 − 𝜆) − 2 = 0      

⇒ 𝜆2 − 7𝜆 + 10 = 0  

⇒ (𝜆 − 5)(𝜆 − 2) = 0  

 ⇒ 𝜆 = 2 𝑜𝑟 5  

𝜆 = 2 ⇒ (
2 2
1 1

) (
𝑥
𝑦) = (

0
0

)  ⇒ 𝑥 + 𝑦 = 0 ⇒ eigenvector of (
1

−1
)  
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𝜆 = 5 ⇒ (
−1 2
1 −2

) (
𝑥
𝑦) = (

0
0

)  ⇒ −𝑥 + 2𝑦 = 0  

⇒  eigenvector of (
2
1

)  

The equations of the invariant lines representing these 

eigenvectors are:  𝑦 = −𝑥  and  𝑦 =
1

2
𝑥  

 

(2) Diagonalisation of a (general) matrix  

(i) A matrix 𝑀 is said to be diagonalisable if there exists a 

diagonal matrix 𝐷 such that  𝑀 = 𝑃𝐷𝑃−1. 

Matrices 𝐴 and 𝐵 are said to be similar if 𝐵 = 𝑃𝐴𝑃−1 for some 

matrix 𝑃, but there is no requirement for 𝐴 (or 𝐵) to  be diagonal. 

As you've probably gathered, there's no shortage of definitions in 

the subject of matrices.  

Thus, a matrix is diagonalisable if it is similar to a diagonal matrix. 

(ii) We therefore need to find an invertible matrix 𝑃 such that 

𝑀𝑃 = 𝑃𝐷  

For the matrix (
4 2
1 3

), we saw that the eigenvectors were 

(
1

−1
)  and  (

2
1

), with corresponding eigenvalues of 2  and 5   

Then  (
4 2
1 3

) (
1

−1
) = 2 (

1
−1

)  and  (
4 2
1 3

) (
2
1

) = 5 (
2
1

) 

so that  (
4 2
1 3

) (
1 2

−1 1
) = (

1 2
−1 1

) (
2 0
0 5

) 

[Note that the image of  (
1
0

) under the transformation (
1 2

−1 1
) is 

(
1

−1
), so that the image of  (

2
0

)  is 2 (
1

−1
)] 
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This has the required form 𝑀𝑃 = 𝑃𝐷, so that the columns of 𝑃 are 

the eigenvectors of 𝑀 and the diagonal elements of 𝐷 are the 

eigenvalues of 𝑀 (in the same order as the corresponding 

eigenvectors appear in 𝑃). 

 

(iii) Diagonalisability 

In order for an 𝑛 × 𝑛 matrix 𝑀 to be diagonalisable, it must have 𝑛 

linearly independent eigenvectors, so that det 𝑃 ≠ 0, and hence 𝑃 

is invertible. Thus it is necessary for 𝑀 to have only real 

eigenvalues. 

If the eigenvalues are real and distinct, then the eigenvectors will 

be linearly independent.  

If there are repeated eigenvalues, then it is still possible for the 

eigenvectors to be linearly independent - see Part 4, (F)(10). 

 

(iv) The diagonalising of 𝑀 can be associated with a coordinate 

transformation, as follows: 

If 𝑀 = 𝑃𝐷𝑃−1, it will have the same eigenvalues as 𝐷. For the 

example above, 

(
2 0
0 5

) (
1
0

) = 2 (
1
0

)  and  (
2 0
0 5

) (
0
1

) = 5 (
0
1

) 

[again, noting that the image of (
1
0

) under the transformation 

(
2 0
0 5

) is (
2
0

)] 

Effectively the eigenvectors have been transformed to the simpler 

coordinates (
1
0

)  and (
0
1

).   
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Writing  𝑇 (
1

−1
) = (

1
0

)  and  𝑇 (
2
1

) = (
0
1

), so that 𝑇 is the matrix 

representing this coordinate transformation, we see that 

𝑇 (
1 2

−1 1
) = (

1 0
0 1

)  ; ie 𝑇𝑃 = 𝐼,  and hence 𝑇 = 𝑃−1  

Also, if (
𝑎
𝑏

) is a general vector in the original coordinate system, 

and if it can be expressed in terms of the eigenvectors as 

 𝛼 (
1

−1
) + 𝛽 (

2
1

), then (
𝑎
𝑏

) will be transformed to the new 

coordinates  𝑃−1 (
𝑎
𝑏

) =  𝛼𝑃−1 (
1

−1
) + 𝛽𝑃−1 (

2
1

) 

= 𝛼 (
1
0

) + 𝛽 (
0
1

) = (
𝛼
𝛽)  

Thus, in the old system, the image of (
𝑎
𝑏

) under 𝑀 is 

𝑀 (
𝑎
𝑏

) = 𝑃𝐷𝑃−1 (
𝑎
𝑏

) , whereas after transforming coordinates, the 

image of (
𝛼
𝛽) under 𝐷 is just 𝐷 (

𝛼
𝛽) 

Note also that 𝑃𝐷𝑃−1 (
𝑎
𝑏

) can be interpreted as follows: 

First apply the coordinate transformation 𝑃−1 to (
𝑎
𝑏

), to obtain 

𝑃−1 (
𝑎
𝑏

) = (
𝛼
𝛽) ; then apply 𝐷 in the new system, to give 𝐷 (

𝛼
𝛽); 

and finally convert back to the old system by applying the inverse 

of  𝑃−1, to give  𝑃𝐷 (
𝛼
𝛽). 

[The change of coordinates described above involves changing 

the basis of ℝ2 from (
1
0

) , (
0
1

) to (
1

−1
) , (

2
1

)] 

 

(v) If 𝑀 = 𝑃𝐷𝑃−1, then 
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 𝑀𝑛 = (𝑃𝐷𝑃−1)(𝑃𝐷𝑃−1)(𝑃𝐷𝑃−1) … = 𝑃𝐷𝐼𝐷𝐼𝐷. . . 𝐼𝐷𝑃−1 

= 𝑃𝐷𝑛𝑃−1  

 

(vi) If 𝑀 = 𝑃𝐷𝑃−1, then |𝑀| = |𝑃|. |𝐷|. |𝑃−1| = |𝑃|. |𝑃−1|. |𝐷| 

= |𝑃𝑃−1|. |𝐷| = |𝐼|. |𝐷| = |𝐷|  

 

(vii) Even if a matrix 𝑀 isn't diagonalisable, it is generally 

possible to find a triangular matrix 𝑇 ∗ that is similar to 𝑀; ie such 

that  𝑀 = 𝑃𝑇𝑃−1. If 𝑀 has eigenvalues, then these will be shared 

by 𝑇.  

* (upper) triangular matrix:  eg  (

2 3
0 4

5 8
6 9

0 0
0 0

7 2
0 3

) 

(where the entries below the diagonal are zero, and the diagonal 

entries could be zero) 

 

(3) Diagonalisation of a symmetric matrix  

(i) Preliminary definitions and results 

(a) A matrix 𝐴 is described as orthogonal if 𝐴−1 = 𝐴𝑇  

(b) It can be shown that a matrix is orthogonal if and only if 

1. its columns are mutually orthogonal (ie perpendicular, so that 
their scalar product is zero) 
2. each column has unit magnitude 

[See Matrices - Exercises (Part 2) for a proof.] 

(c) An eigenvector is 'normalised', by dividing each of its elements 

by its magnitude. It then has unit magnitude.  
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For example, (
1
2
3

) becomes 
1

√1+4+9
(

1
2
3

) =
1

√14
(

1
2
3

) 

(ii) If  𝑀 is symmetric, then the following results can be 

established: 

(a) 𝑀 has only real eigenvalues [the proof involves matrices with 

complex elements]. 

(b) 𝑀 can always be diagonalised (ie whether the eigenvalues are 

distinct or not). 

(c) The eigenvectors of 𝑀 will be mutually orthogonal. 

Proof 

First of all, we note that the scalar product of two eigenvectors 

𝑥1 & 𝑥2 is  𝑥1
𝑇𝑥2  (or 𝑥2

𝑇𝑥1); ie a row vector multiplied by a 

column vector. 

Suppose then that 𝑀𝑥1 = 𝜆1𝑥1 & 𝑀𝑥2 = 𝜆2𝑥2 , with 𝑀 being 

symmetric. 

Taking the transpose of both sides of the first equation gives 

𝑥1
𝑇𝑀𝑇 = 𝜆1𝑥1

𝑇  or  𝑥1
𝑇𝑀 = 𝜆1𝑥1

𝑇  , as 𝑀 is symmetric 

Multiplying on the right by 𝑥2 (which is compatible) then gives 

𝑥1
𝑇𝑀𝑥2  = 𝜆1𝑥1

𝑇𝑥2  and hence   𝑥1
𝑇𝜆2𝑥2  = 𝜆1𝑥1

𝑇𝑥2 

Rearranging, we have  (𝜆2 − 𝜆1)𝑥1
𝑇𝑥2 = 0, 

so that, assuming 𝜆1 ≠ 𝜆2, 𝑥1
𝑇𝑥2 = 0 and thus the eigenvectors 

are perpendicular to each other, or 'mutually orthogonal'. 

 

(d) If the eigenvectors of 𝑀 are 'normalised' , then 𝑃 will be 

orthogonal (ie 𝑃−1 = 𝑃𝑇). 
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Suppose that 𝑄 is the matrix of eigenvectors prior to 

normalisation, and that 𝑃 is the matrix of normalised 

eigenvectors. 

 Then 𝑀 = 𝑄𝐷𝑄−1 = 𝑃𝐷𝑃−1 = 𝑃𝐷𝑃𝑇  

(note that the change from 𝑃 to 𝑄 is balanced by the change from 

𝑃−1 to 𝑄−1) 

𝑃𝑇  is of course much easier to determine than 𝑃−1 

[By definition, the eigenvectors then form an orthonormal set of 

vectors - as a result of being mutually orthogonal and of unit 

magnitude.] 

 

(iii) When 𝑃 is orthogonal, 𝑀 is said to be orthogonally 

diagonalisable, and it can be shown that this is the case if and only 

if 𝑀 is symmetric [see Matrices - Exercises (Part 2) for the easier 

half of the proof]. 

 

(4) Miscellaneous 

(i) The sum of the eigenvalues of 𝑀 equals the trace of 𝑀 (the 

sum of the elements on the main diagonal).  [See Matrices -

Exercises (Part 2)] 

(ii) The product of the eigenvalues of 𝑀 equals det 𝑀. [See 

Matrices - Exercises (Part 2)] 

 

 

  


