
  fmng.uk 

1 
 

Differential Equations - Oscillations (11 pages; 29/5/20)  

 

(A) Simple Harmonic Motion (SHM) 

(1) Example 1: Hanging spring 

By Newton's 2nd law,  𝑚
𝑑2𝑥

𝑑𝑡2 = 𝑚𝑔 − 𝑇 

where the tension 𝑇 = 𝑘(𝑒 + 𝑥), with 𝑘 being the stiffness of the 

spring, 𝑒 the extension of the spring hanging in equilibrium, and 𝑥 

the further extension beyond the equilbrium position. 

As equilibrium gives  𝑚𝑔 = 𝑘𝑒, the differential equation reduces 

to   
𝑑2𝑥

𝑑𝑡2 = −
𝑘𝑥

𝑚
  

 

(2) Example 2: Pendulum 

The distance travelled along the path of the pendulum is  𝑙𝜃, 

where 𝑙 is the length of the pendulum and 𝜃 is the angle (in 

radians) that it makes with the vertical. 

The acceleration along the path is then  𝑙
𝑑2𝜃

𝑑𝑡2    and the component 

of the bob's weight along the path is −𝑚𝑔𝑠𝑖𝑛𝜃. 

So  𝑚𝑙
𝑑2𝜃

𝑑𝑡2 = −𝑚𝑔𝑠𝑖𝑛𝜃  and, with 𝑠𝑖𝑛𝜃 ≈ 𝜃,  

this becomes  
𝑑2𝜃

𝑑𝑡2 ≈ −
𝑔𝜃

𝑙
 

 

(3) The above examples are both cases of simple harmonic 

motion, with the general equation   
𝑑2𝑥

𝑑𝑡2 = −𝜔2𝑥 

[The term 𝜔2 is chosen, to represent a positive quantity.] 
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Referring to "Second-order Differential Equations", the general 

solution is obtained by considering the auxiliary equation 

𝜆2 + 𝜔2 = 0, giving 𝜆 = ±𝜔𝑖, 

so that 𝑥 = 𝐴𝑒𝑖𝜔𝑡 + 𝐵𝑒−𝑖𝜔𝑡 

= (𝐴𝑐𝑜𝑠𝜔𝑡 + 𝑖𝐴𝑠𝑖𝑛𝜔𝑡) + (𝐵𝑐𝑜𝑠𝜔𝑡 − 𝑖𝐵𝑠𝑖𝑛𝜔𝑡)  

= 𝐶𝑐𝑜𝑠𝜔𝑡 + 𝐷𝑠𝑖𝑛𝜔𝑡 , 

where 𝐶 = 𝐴 + 𝐵  and 𝐷 = (𝐴 − 𝐵)𝑖 

As 𝐶 and 𝐷 must be real (to give a solution in the real world), we 

require that A and B be complex conjugates of each other. 

Then   𝐶𝑐𝑜𝑠𝜔𝑡 + 𝐷𝑠𝑖𝑛𝜔𝑡  can be written as  𝑎𝑠𝑖𝑛(𝜔𝑡 + 𝛼),   

where 𝑎 is the amplitude of the oscillations, and the period 𝑇 is 

given by  𝜔𝑇 = 2𝜋,  so that  𝑇 =
2𝜋

𝜔
  , and the frequency (the 

number of cycles in 1 second) =
1

𝑇
=

𝜔

2𝜋
; 𝜔 is the 'angular 

frequency'. 

 

Note: �̇� and  �̈�  may be used to represent 
𝑑𝑥

𝑑𝑡
 and 

𝑑2𝑥

𝑑𝑡2  , respectively. 

 

(4) The equation  
𝑑2𝑥

𝑑𝑡2 = −𝜔2𝑥  can also be solved as follows: 

𝑑2𝑥

𝑑𝑡2 =
𝑑𝑣

𝑑𝑡
=

𝑑𝑣

𝑑𝑥
 .  

𝑑𝑥

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑥
    ; so  𝑣

𝑑𝑣

𝑑𝑥
= −𝜔2𝑥 

and hence  ∫ 𝑣 𝑑𝑣 = − 𝜔2 ∫ 𝑥 𝑑𝑥 ,  

giving  
1

2
𝑣2 = −

1

2
𝜔2𝑥2 + 𝐶 

Then, if 𝑥 = 𝑎 when 𝑣 = 0, 
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0 = −
1

2
𝜔2𝑎2 + 𝐶, so that  𝐶 =

1

2
𝜔2𝑎2 

and  𝑣2 = 𝜔2(𝑎2 − 𝑥2) 

Then 𝑥 can be determined by writing 𝑣 = �̇�  and integrating 

again: 

𝑑𝑥

𝑑𝑡
= ±𝜔√𝑎2 − 𝑥2 ⇒ ± ∫

1

√𝑎2−𝑥2
= 𝜔 ∫ 𝑑𝑡   

⇒ 𝜔𝑡 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑥

𝑎
) − 𝛼 or  𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑥

𝑎
) − 𝛼 

⇒ 𝑥 = 𝑎𝑠𝑖𝑛 (𝜔𝑡 + 𝛼) or 𝑥 = 𝑎𝑐𝑜𝑠 (𝜔𝑡 + 𝛼) 

Note though that  𝑎𝑐𝑜𝑠(𝜔𝑡 + 𝛼) = 𝑎𝑐𝑜𝑠(−[𝜔𝑡 + 𝛼]) 

= 𝑎𝑠𝑖𝑛 (
𝜋

2
− (−[𝜔𝑡 + 𝛼])) = 𝑎𝑠𝑖𝑛 (𝜔𝑡 + 𝛼′),  

where 𝛼′ = 𝛼 +
𝜋

2
 (or just from the fact that the sine function lags 

behind the cosine function, so that eg cos0 = sin (
𝜋

2
)). 

 

(5) Example: Consider an elastic string AB of natural length 

2.5 and modulus of elasticity 15. 

A particle P of mass 0.5 is attached to the string such that, when it 

is unstretched, 𝐴𝑃 = 1 and 𝑃𝐵 = 1.5 

The string with P attached is then stretched horizontally, so that A 

and B are a distance 5 apart.  

𝑃 is then pulled to one side, so that 𝑃𝐵 = 2, and then released. 

Describe the subsequent motion of 𝑃. 
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Solution 

We can consider the string AB as consisting of two strings AP and 

PB, each with modulus of elasticity 15, and natural lengths 1 and 

1.5, respectively. 

First of all we need to consider the general position of P during 

the motion. Suppose that it is at a distance 𝑥 to the right of O, 

which is halfway between A and B. 

 

We can create a force diagram for P, as shown below, where 

𝑇1 & 𝑇2 are the tensions in AP and PB, respectively. 

 

 

Then, by N2L, 𝑇2 − 𝑇1 = 0.5�̈�, 

and by Hooke's law, 𝑇1 =
15(2.5+𝑥−1)

1
= 15(1.5 + 𝑥) 
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and 𝑇2 =
15(2.5−𝑥−1.5)

1.5
= 10(1 − 𝑥) 

and so  10(1 − 𝑥) − 15(1.5 + 𝑥) = 0.5�̈� 

⇒ −12.5 − 25𝑥 = 0.5�̈�  

⇒ �̈� + 50𝑥 = −25  (1) 

Note that this isn't in the standard SHM form  �̈� + 𝜔2𝑥 = 0 

However, if we write 𝑦 = 𝑥 + 0.5, then  �̈� + 50𝑦 = 0. 

This shows that there is SHM about the point where 𝑦 = 0; ie 

where 𝑥 = −0.5 

Alternatively (for the practice), (1) can be solved as 𝑥 = 𝐶𝐹 + 𝑃𝐼 

['complementary function' and 'particular integral' - see 

"Differential equations: 2nd order (linear, constant coeffs)"] 

The auxiliary equation for the homogeneous equation 

�̈� + 50𝑥 = 0  is 𝜆2 + 50 = 0, giving 𝜆 = ±𝑖√50, 

so that  𝐶𝐹 = 𝐴𝑒𝑖√50 𝑡 + 𝐵𝑒−𝑖√50 𝑡 

= (𝐴𝑐𝑜𝑠√50𝑡 + 𝑖𝐴𝑠𝑖𝑛√50𝑡) + (𝐵𝑐𝑜𝑠√50𝑡 − 𝑖𝐵𝑠𝑖𝑛√50𝑡)  

= 𝐶𝑐𝑜𝑠√50𝑡 + 𝐷𝑠𝑖𝑛√50𝑡 , 

where 𝐶 = 𝐴 + 𝐵  and 𝐷 = (𝐴 − 𝐵)𝑖 

As 𝐶 and 𝐷 must be real (to give a solution in the real world), we 

require that A and B be complex conjugates of each other. 

Then   𝐶𝑐𝑜𝑠√50𝑡 + 𝐷𝑠𝑖𝑛√50𝑡  can be written as  𝐸𝑠𝑖𝑛(√50𝑡 + 𝛼)   

For the 𝑃𝐼, the trial function is 𝑥 = 𝑎, and (1) then gives 

50𝑎 = −25, so that 𝑎 = −0.5  

So the general solution is  𝑥 = 𝐸𝑠𝑖𝑛(√50𝑡 + 𝛼) − 0.5 
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(ie SHM about 𝑥 = −0.5, as found previously). 

Applying the initial conditions, 

𝑡 = 0, 𝑥 = 0.5 ⇒ 0.5 = 𝐸𝑠𝑖𝑛𝛼 − 0.5 ⇒ 𝐸𝑠𝑖𝑛𝛼 = 1  

Also �̇� = 𝐸√50cos (√50𝑡 + 𝛼), 

so that  𝑡 = 0, �̇� = 0 ⇒ 0 = 𝐸√50cos𝛼 ⇒ 𝛼 =
𝜋

2
  

Then 𝐸𝑠𝑖𝑛𝛼 = 1 ⇒ 𝐸 = 1, 

 so that  𝑥 = 𝑠𝑖𝑛 (√50𝑡 +
𝜋

2
) − 0.5  (2) 

ie SHM about 𝑥 = −0.5, with amplitude 1 and period 
2𝜋

√50
 

[Either consider T such that √50 𝑇 = 2𝜋, or note that 𝑠𝑖𝑛(√50𝑡) is 

obtained from 𝑠𝑖𝑛 𝑡 by a stretch of scale factor 
1

√50
 , resulting in 

the period being reduced by this factor.] 

As a check, we can also confirm that when 𝑥 = −0.5, 

𝑇1 =
15(2−1)

1
= 15  and  𝑇2 =

15(3−1.5)

1.5
= 15, so that the net force, 

and hence acceleration, is zero when P is at the centre of the SHM. 

Also, note that (2) ⇒  −1.5 ≤ 𝑥 ≤ 0.5, and that the strings are taut 

within this range (so that Hooke's law applies throughout). 

[Had the initial condition been that 𝑥 = 1 when 𝑡 = 0, then we 

would have the solution 𝑥 = 1.5𝑠𝑖𝑛 (√50𝑡 +
𝜋

2
) − 0.5, but this 

would imply that −2 ≤ 𝑥 ≤ 1, and the string AP would not be taut 

for −2 ≤ 𝑥 < −1.5, so that the equation of motion is invalidated. 
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(B) Other situations  

(1) The examples in (A) involved differential equations of the 

form  �̈� + 𝜔2𝑥 = 𝑐, where 𝑐 is a constant, and the motion was 

seen to be SHM (whether 𝑐 = 0 or not).   

We shall now look at equations of the following forms: 

(I) Friction: �̈� + 𝜔2𝑥 = ±𝜇𝑔 , where the sign depends on the 

direction of motion 

(II) Damping: �̈� + 𝛼�̇� + 𝜔2𝑥 = 0, where 𝛼 > 0 

(III) �̈� + 𝛼�̇� + 𝜔2𝑥 = 𝑐  (𝛼 > 0) 

(IV) Forced oscillations: �̈� + 𝛼�̇� + 𝜔2𝑥 = 𝑐𝑠𝑖𝑛Ω𝑡  (𝛼 > 0) 

 

(2) In the case of (I), where there is a frictional force,  

𝑚�̈� = −𝑚𝜔2𝑥 − 𝜇𝑚𝑔  when motion is in the direction of 𝑥 

increasing, 

and 𝑚�̈� = −𝑚𝜔2𝑥 + 𝜇𝑚𝑔  when motion is in the direction of 𝑥 

decreasing. 

So the graph takes a complicated form. 

 

(3) Damping 

In the case of (II), where  �̈� + 𝛼�̇� + 𝜔2𝑥 = 0 (with 𝛼 > 0) 

or  �̈� = −𝛼�̇� − 𝜔2𝑥, the presence of the 𝛼�̇� term indicates that the 

acceleration is dependent on the velocity, and this happens where 

there is 'damping', such as is caused by movement through a 

viscous liquid. 
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(3.1) Heavy damping (or 'overdamping') 

If the discriminant of the auxiliary equation, 𝛼2 − 4𝜔2 > 0, then 

the  auxiliary equation has real roots, so that the solution is of the 

form  𝑥 = 𝐴𝑒−𝑝𝑡 + 𝐵𝑒−𝑞𝑡 (𝑝 & 𝑞 > 0), and the system decays 

without oscillating.  

[The roots of the auxiliary equation are 
−𝛼±√𝛼2−4𝜔2

2
  and are thus 

both negative, as 𝛼 > 0.] 

If exactly one of 𝐴 and 𝐵 is negative, then the graph will cross the 

𝑡-axis once: 

𝐴𝑒−𝑝𝑡 + 𝐵𝑒−𝑞𝑡 = 0 ⇒ 𝑒−𝑝𝑡(𝐴 + 𝐵𝑒(𝑝−𝑞)𝑡) = 0  

⇒ 𝑒(𝑝−𝑞)𝑡 = −
𝐴

𝐵
   

Typical graphs are shown below. 

 

(3.2) Critical damping 

If the discriminant of the auxiliary equation, 𝛼2 − 4𝜔2 = 0, then 

the  auxiliary equation has a repeated root, so that the  solution is 
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of the form  (𝐴 + 𝐵𝑡)𝑒−
𝛼

2
𝑡 , and the system decays without 

oscillating, in a similar way to heavy damping.  

Once again, if exactly one of 𝐴 and 𝐵 is negative, then the graph 

will cross the 𝑡-axis once, when 𝑡 = −
𝐴

𝐵
 . 

 

(3.3) Light damping (or 'underdamping') 

If the discriminant of the auxiliary equation, 𝛼2 − 4𝜔2 < 0, then 

the  auxiliary equation has complex roots, so that the  solution is 

of the form  𝐴𝑒−
𝛼

2
𝑡sin (𝑏𝑡 + 𝜀), and the system oscillates whilst 

decaying. 

 

(3.4) In summary, if the roots of the auxiliary equation are real, 

then the system decays without oscillating (heavy and critical 

damping); and if they are complex then the system oscillates 

whilst decaying (light damping). 

Note that the damping force is 𝑚𝛼�̇�, whilst the restoring force is 

𝑚𝜔2𝑥, and so the relative sizes of  𝛼 and 𝜔2 determine whether 

the damping is heavy (when 𝛼2 > 4𝜔2) or light (when 𝛼2 < 4𝜔2).  
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The initial conditions will determine the values of the constants in 

the solution, and hence the precise pattern of the graphs. 

 

(4.1) In the case of (III), where  �̈� + 𝛼�̇� + 𝜔2𝑥 = 𝑐, the 

substitution 𝑦 = 𝜔2𝑥 − 𝑐  can be made, to give 

1

𝜔2 �̈� + 𝛼
1

𝜔2 �̇� + 𝑦 = 0   or   �̈� + 𝛼�̇� + 𝜔2𝑦 = 0  

This is similar to the example of the SHM in (A)(5), where the 

constant term 𝑐 resulted from the fact that 𝑥 wasn't being 

measured from its centre of oscillation. 

 

(4.2) Alternatively, if �̈� + 𝛼�̇� + 𝜔2𝑥 = 𝑐 is written as 

�̈� + 𝛼�̇� + 𝜔2𝑥 = 𝛼𝑢, this can represent a situation where the 

particle is moving at constant speed 𝑢 at 𝑥 = 0 (ie with 

(instantaneously) zero acceleration)[as this satisfies the 

differential equation]   

 

(5.1) Forced oscillations 

(IV) can be rewritten as  �̈� = −𝜔2𝑥 − 𝛼�̇� − 𝑐𝑠𝑖𝑛Ω𝑡   

The presence of the 𝑐𝑠𝑖𝑛Ω𝑡  term indicates that there is some 

external force that oscillates with time. 

The particular integral will be of the form 𝑎𝑠𝑖𝑛(𝛺𝑡 + 𝜀), and this 

will be superimposed on the appropriate damped solution. 

(5.2) When there is no damping term, so that 

�̈� = −𝜔2𝑥 − 𝑐𝑠𝑖𝑛Ω𝑡 (or if the damping term is small) then the 

phenomenon of resonance can be observed when Ω = ω. This 

involves the build up of increasingly large oscillations. 
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In this case the usual trial function for the particular integral is  

𝑥 = 𝑝𝑠𝑖𝑛𝜔𝑡 + 𝑞𝑐𝑜𝑠𝜔𝑡, which is the complementary function. 

(This doesn't happen when there is damping, as this gives rise to 

a negative exponential factor in the complementary function.) 

In such cases, the trial function is  𝑥 = 𝑡(𝑝𝑠𝑖𝑛𝜔𝑡 + 𝑞𝑐𝑜𝑠𝜔𝑡), and 

so the resulting particular integral will increase in amplitude with 

time. 

There are known cases of structures such as bridges collapsing 

due to forced oscillations (eg caused by wind) having the same 

frequency as the 'natural frequency' 𝜔 of the structure. 

 

(6) Situation involving two particles 

See STEP 2014, P3, Q10 for an example of a conservative system 

involving SHM, which (surprisingly) doesn't return to its starting 

position. 


