
  fmng.uk 

1 
 

Differential Equations: Approximate methods 

(9 pages; 26/2/21) 
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(1) Tangent Fields 

Whether or not an analytical (ie non-approximate) solution exists 

for a differential equation of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), it will be 

possible to plot the direction indicators for the curve. 

 

Example 1:  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 

Figure 1 below shows the direction indicators at various points, 

whilst Figure 2 shows the family of solutions of the equation. 

(This can be shown to be  𝑦 = 𝐴𝑒𝑥 − 𝑥 − 1.) 

An isocline is a locus of points for which the direction indicators 

are the same. Here, for example, the line 𝑦 = −𝑥 is an isoscline 

where the gradient of the direction indicator is 0. 



  fmng.uk 

2 
 

 

Figure 1 

 

 

 

 

Figure 2 

 

(2) Euler's Method (for 1st order equations) 

Consider the differential eq’n  
𝑑𝑦

𝑑𝑥
= 𝑔(𝑥, 𝑦), with solution 

𝑦 = 𝑓(𝑥).  
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Consider the diagram below, where the tangent to 𝑦 = 𝑓(𝑥) is 

drawn at the point (𝑥0, 𝑦0).  

 

 

 

 

 

 

We will use 𝑦1 as an estimate for 𝑓(𝑥0 + ℎ) = 𝑓(𝑥1) 

(The greater the change of gradient at the point - ie the greater 

the magnitude of 𝑓′′(𝑥0)  - the less accurate the estimate will be.) 

Thus 𝑓(𝑥1) ≈ 𝑦1 = 𝑦0 + ℎ𝑡𝑎𝑛𝜃 = 𝑦0 + ℎ𝑓′(𝑥0) = 𝑦0 + ℎ𝑔(𝑥0, 𝑦0) 

[𝑡𝑎𝑛𝜃 can be thought of as the scale factor to be applied to the 

base of the triangle, in order to obtain its height] 

So 𝑦1 = 𝑦0 + ℎ𝑔(𝑥0, 𝑦0) 

Then we can write 𝑓(𝑥2) = 𝑓(𝑥1 + ℎ) ≈ 𝑦2 = 𝑦1 + ℎ𝑔(𝑥1, 𝑦1), 

and so on for 𝑓(𝑥3) etc. 

But note that, this time, the point (𝑥1, 𝑦1) will not actually be on 

the curve – which introduces a further approximation into the 

sequence of estimates 𝑦1 , 𝑦2 , 𝑦3 , … (Note also that 𝑦2 is being 

defined as 𝑦1 + ℎ𝑔(𝑥1, 𝑦1); ie there is no approximation involved.) 

 

Example 2:  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, where 𝑦 = 0 when 𝑥 = 0 

With  𝑥0 = 0 ,  𝑦0 = 0  and ℎ = 0.1, 

𝑥1 = 0.1,   𝑦1 = 0 + 0.1(0 + 0) = 0  
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𝑥2 = 0.2, 𝑦2 = 0 + 0.1(0.1 + 0) = 0.01  

𝑥3 = 0.3, 𝑦3 = 0.01 + 0.1(0.2 + 0.01) = 0.031  

 

(3) Improved estimate for Euler's method 

If 𝛼 is a particular value of 𝑥 , then, for small values of ℎ, it can be 

shown that the estimate of 𝑦 at 𝑥 = 𝛼, 𝑦(𝛼) is approximately a 

linear function of ℎ; i.e. 𝑦(𝛼) ≈ 𝑚ℎ + 𝑐 (*) 

 

By carrying out Euler's method for two values of ℎ, and obtaining 

a value for 𝑦(𝛼) in each case, two simultaneous equations of the 

form (*) are created, and these can be solved to obtain a value for 

𝑐. This value is then equivalent to putting ℎ = 0, and is thus an 

improved value for 𝑦(𝛼). 

For Example 2, with  ℎ = 0.05, 

𝑥1 = 0.05,   𝑦1 = 0 + 0.05(0 + 0) = 0  

𝑥2 = 0.1, 𝑦2 = 0 + 0.05(0.05 + 0) = 0.0025  

𝑥3 = 0.15, 𝑦3 = 0.0025 + 0.05(0.1 + 0.0025) = 0.007625  

𝑥4 = 0.2, 𝑦4 = 0.007625 + 0.05(0.15 + 0.007625) = 0.01550625  

 

Thus, with 𝛼 = 0.2 and ℎ = 0.05, an estimate for 𝑦(0.2) is 

0.01550625 or 0.0155 (3sf) 

We can then write 0.01550625 = 𝑚(0.05) + 𝑐   (1) 

 

Earlier we obtained the estimate of 0.01 for 𝑦(0.2), with ℎ = 0.1, 

and this gives   0.01 = 𝑚(0.1) + 𝑐   (2) 
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Then 2 × (1) − (2) gives 𝑐 = 0.0310125 − 0.01 = 0.0210125, and 

hence an improved estimate for 𝑦(0.2) is  0.0210 (3sf) 

The true value is 𝑒0.2 − 0.2 − 1 = 0.0214 (3sf). 

To summarise: 

 estimate of 𝑦(0.2) 
ℎ = 0.1  0.01 
ℎ = 0.05  0.0155 
ℎ ≈ 0  0.0210 
 0.0214 (true value) 

 

 

(4) Midpoint method (for 1st order equations) 

As before, consider the differential eq’n  
𝑑𝑦

𝑑𝑥
= 𝑔(𝑥, 𝑦), with 

solution 𝑦 = 𝑓(𝑥).  

An improvement can usually be made to Euler's method by 

considering approximations to the 𝑦-coordinate either side of  

𝑦0 (see the diagram below). 

 

 

 

 

 

 

 

We can write 𝑓(𝑥1) ≈ 𝑦1 = 𝑦−1 + 2ℎ𝑡𝑎𝑛𝜃 = 𝑦−1 + 2ℎ𝑓′(𝑥0) 
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= 𝑦−1 + 2ℎ𝑔(𝑥0, 𝑦0)  

and 𝑓(𝑥2) ≈ 𝑦2 = 𝑦0 + 2ℎ𝑔(𝑥1, 𝑦1) etc 

Euler’s method is commonly used to obtain 𝑦1, and get the mid-

point method started with 𝑦2 (so that 𝑦1 = 𝑦−1 + 2ℎ𝑔(𝑥0, 𝑦0) is 

not used). 

 

Example 2 (again):  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, where 𝑦 = 0 when 𝑥 = 0 

with ℎ = 0.1 again. 

Solution 

𝑥0 = 0 ,  𝑦0 = 0  again. 

𝑥1 = 0 + 0.1 = 0.1  

Euler's method is applied to find 𝑦1, to give 𝑦1 = 0, as before. 

Then  
𝑑𝑦

𝑑𝑥
| 1 ≈ 𝑥1 + 𝑦1 = 0.1 + 0 = 0.1 

𝑥2 = 0.1 + 0.1 = 0.2  

By the midpoint formula, 𝑦2 = 𝑦0 + 2ℎ(𝑥1 + 𝑦1), 

so that 𝑦2 ≈ 0 + 2(0.1)(0.1) = 0.02 

𝑥3 = 0.2 + 0.1 = 0.3  

Then  
𝑑𝑦

𝑑𝑥
| 2 ≈ 𝑥2 + 𝑦2 = 0.2 + 0.02 = 0.22 

𝑦3 ≈ 𝑦1 + 2ℎ(𝑥2 + 𝑦2), 

so that 𝑦3 ≈ 0 + 2(0.1)(0.22) = 0.044 

[This compares with 0.031 by Euler's method.] 
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(5) 2nd Order method 

Consider the differential eq’n 
𝑑2𝑦

𝑑𝑥2 = 𝑔(𝑥, 𝑦), with solution 

𝑦 = 𝑓(𝑥).  

The following iterative formula can be derived 

𝒚𝒓 = −𝒚𝒓−𝟐 + 𝟐𝒚𝒓−𝟏 + 𝒉𝟐g(𝒙𝒓−𝟏, 𝒚𝒓−𝟏) 
  

Derivation: As 
𝑑2𝑦

𝑑𝑥2 is the gradient of 
𝑑𝑦

𝑑𝑥
, 

𝑑2𝑦

𝑑𝑥2 | 0 ≈
𝑑𝑦

𝑑𝑥
| 0−

𝑑𝑦

𝑑𝑥
| −1

ℎ
 

[Notice that we are looking backwards this time, whereas Euler's 

method looks forward with 
𝑑𝑦

𝑑𝑥
| 0 =

𝑦1−𝑦0

ℎ
 ] 

=
(

𝑦1−𝑦0
ℎ

)−(
𝑦0−𝑦−1

ℎ
)

ℎ
=

(𝑦1−𝑦0)−(𝑦0−𝑦−1)

ℎ2 =
𝑦1−2𝑦0+𝑦−1

ℎ2   

⇒ ℎ2 𝑑2𝑦

𝑑𝑥2 | 0 ≈ 𝑦1 − 2𝑦0 + 𝑦−1  

⇒ 𝑦1 ≈ −𝑦−1 + 2𝑦0 + ℎ2 𝑑2𝑦

𝑑𝑥2 | 0  (*) 

which gives the required iterative formula, if we re-define 𝑦𝑟  by 

𝑦𝑟 = −𝑦𝑟−2 + 2𝑦𝑟−1 + ℎ2g(𝑥𝑟−1, 𝑦𝑟−1)  

[The 𝑦𝑖  are the values from Euler’s method, and are related by the 

approximate relation (*), but we are at liberty to define them as 

we wish for the 2nd Order method.] 

Thus 𝑦2 = −𝑦0 + 2𝑦1 + ℎ2g(𝑥1, 𝑦1) 

Once again, Euler’s method will often be applied to find 𝑦1. But, in 

order to do this, a value will need to have been provided for 

𝑓′(𝑥0) [in order to use 𝑦1 = 𝑦0 + ℎ𝑓′(𝑥0)] 
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Example 3: 
𝑑2𝑦

𝑑𝑥2 = 𝑥(𝑥 + 𝑦), given that when 𝑥 = 1, 𝑦 = 2 and 

 
𝑑𝑦

𝑑𝑥
= 1; with ℎ = 0.1 

Solution 

Method 1 (using Euler's formula) 

𝑥0 = 1 ,  𝑦0 = 2   

𝑥1 = 𝑥0 + ℎ = 1 + 0.1 = 1.1  

Use Euler's method to obtain a value for 𝑦1: 

𝑦1 = 𝑦0 + ℎ
𝑑𝑦

𝑑𝑥
| 0 = 2 + (0.1)(1) = 2.2  

𝑥2 = 𝑥1 + ℎ = 1.1 + 0.1 = 1.2  

 

Then the formula  𝑦𝑟 = −𝑦𝑟−2 + 2𝑦𝑟−1 + ℎ2𝑔(𝑥𝑟−1 + 𝑦𝑟−1) , gives: 

𝑦2 = −𝑦0 + 2𝑦1 + ℎ2𝑥1(𝑥1 + 𝑦1)  

= −2 + 2(2.2) + (0.01)(1.1)(1.1 + 2.2)  

= 2.4363  

and values for 𝑦3 etc are obtained in the same way. 

 

Method 2 (a more accurate - but longer - approach, using the 

midpoint formula) 

𝑥0 = 1 ,  𝑦0 = 2   

𝑥1 = 𝑥0 + ℎ = 1 + 0.1 = 1.1  

The 2nd order formula  𝑦𝑟 = −𝑦𝑟−2 + 2𝑦𝑟−1 + ℎ2𝑔(𝑥𝑟−1 + 𝑦𝑟−1) 

gives 

𝑦1 = −𝑦−1 + 2𝑦0 + ℎ2𝑥0(𝑥0 + 𝑦0)  
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so that  𝑦1 = −𝑦−1 + 2(2) + (0.01)(1)(1 + 2) 

= −𝑦−1 + 4.03   (1), 

whilst the midpoint formula  gives  𝑦1 = 𝑦−1 + 2ℎ
𝑑𝑦

𝑑𝑥
| 0  

so that  𝑦1 = 𝑦−1 + 2(0.1)(1) = 𝑦−1 + 0.2  (2) 

Adding (1) & (2):   2𝑦1 = 4.23   and  𝑦1 = 2.115 

[compared with 2.2 by Method 1] 

Then  𝑦2 = −𝑦0 + 2𝑦1 + ℎ2𝑔(𝑥1 + 𝑦1) 

= −𝑦0 + 2𝑦1 + ℎ2𝑥1(𝑥1 + 𝑦1)  

= −2 + 2(2.115) + (0.01)(1.1)(1.1 + 2.115)    

= 2.265365  [compared with 2.4363 by Method 1] 

 

(6) General Points 

(i) Values of 𝑦𝑛 shouldn't be given to too many decimal places 

(though a reasonably large number of dps should be kept in the 

intermediate calculations). 

If accurate values of 𝑓(𝑥𝑛) are required, then the process can be 

repeated for smaller ℎ, until no further change occurs, to the 

required number of decimal places. 

(ii) Euler's method can be used (eg to find another value of 

𝑦𝑛) whenever either (a) a formula is provided for 
𝑑𝑦

𝑑𝑥
 , or (b) when 

a value is given for 
𝑑𝑦

𝑑𝑥
 for a particular value of 𝑥. 


