Cubic Graphs - Exercises (3 pages; 29/7/16)
(1) Point of Inflexion (or 'inflection')

This can be defined as a turning point of the gradient.
So $\frac{d}{d x}\left(\frac{d y}{d x}\right)=0$ and $\frac{d^{2}}{d x^{2}}\left(\frac{d y}{d x}\right) \neq 0$
(sufficient but not necessary condition)
ie $\frac{d^{2} y}{d x^{2}}=0 \& \frac{d^{3} y}{d x^{3}} \neq 0$

Fig. 1: $p(x)=x^{3}-6 x^{2}-4 x+40$
Point of Inflexion at $(2,16)$
(2) For $f(x)=a x^{3}+b x^{2}+c x+d$, what is the x-coordinate of the PoI?
(3) Give examples of cubic functions for which the PoI is at the Origin, and the gradient at the Origin is (a) 1 (b) -1 . How do the shapes of the two graphs differ?
(4) Compare the x-coordinate of the PoI with those of the turning points (where they exist).
(5) Translate the function $q_{0}(x)=2 x^{3}+x \quad$ by $\binom{3}{20}$ and confirm the x-coordinate of the PoI of the translated function.
(6) Find the function $p_{0}(x)$ that results from translating $p(x)=x^{3}-6 x^{2}-4 x+40$, so that its PoI is at the Origin. Sketch $p_{0}(x)$
(7) Consider $g(x)=x^{3}+b x^{2}+c x+d$

Translate the graph of $g(x)$ so that its PoI is at the Origin (to give $\left.g_{0}(x)\right)$.
(8) Consider the effect of reflecting $g_{0}(x)=x^{3}+c_{0} x$ in the x-axis and then in the y-axis. What does this reveal?
(9) Show that the PoI of $y=a(x-p)(x-q)(x-r)$ is at $x=\frac{1}{3}(p+q+r)$
(10) By considering the gradient at the Origin, sketch the possible shapes of $g_{0}(x)=x^{3}+\left(c-\frac{b^{2}}{3}\right) x$
(11) Consider $f(x)=a x^{3}+b x^{2}+c x+d$

Find $f_{0}(x)$, the translated function with its PoI at the Origin.
(12) What condition must apply to $b \& c$ for the function $f(x)=a x^{3}+b x^{2}+c x+d$ to have two turning points?

