Confidence Intervals (3 pages; 16/4/16)
(1) Mean of a Normal distribution with known variance
$X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
$\Rightarrow \mu-1.96 \frac{\sigma}{\sqrt{n}}<\bar{x}<\mu+1.96 \frac{\sigma}{\sqrt{n}}$ with 95% probability
Then, for given $\bar{x}, \mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{n}} \& \mu>\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}$;
ie $\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{n}}$ in 95% of cases (note that
μ is fixed: we shouldn't say that it lies within the above interval with 95% probability - the probability is either 0 or 1 for a particular \bar{x})

Thus a 95% confidence interval for μ is
$\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)$
(assuming that a symmetrical interval is required).
(2) Mean of a Normal distribution with unknown variance, where the sample is large

As the sample is large (usually taken to be ≥ 30), s (based on a divisor of $n-1$) can be assumed to be a reasonably good approximation to σ, so that a 95% confidence interval for μ is $\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right)$
(3) Mean of an unknown distribution (with unknown variance), where the sample is large

As the sample size is large, the Central Limit theorem says that \bar{X} approx. $\sim N\left(\mu, \frac{\sigma^{2}}{n}\right)[n \geq 30$ also applies here $]$ and s can be
assumed to be a reasonably good approximation to σ (again, as the sample size is large).

A 95% confidence interval for μ is then $\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right)$; ie as for (2) (so, for practical purposes, it doesn't matter whether the distribution is Normal or not).
(4) Mean of a Normal distribution with unknown variance, where the sample is small

To reflect the greater uncertainly caused by approximating σ by s when the sample is small, the t-distribution is used, with
$v=n-1$ degrees of freedom.
Eg, for $v=20$, a 95% confidence interval for μ is
$\left(\bar{x}-2.086 \frac{s}{\sqrt{n}}, \bar{x}+2.086 \frac{s}{\sqrt{n}}\right) ;$
(Note that the underlying distribution has to be Normal, in order for the t-distribution to apply. As the sample size increases, the t-value tends to the z-value.)
(5) Binomial proportion, for a large sample (using a Normal approximation)

Let $X \sim B(n, p)$. If n is large and p is not too small, in such a way that a Normal approximation is appropriate (this will usually be the case if $n \geq 50 \& n p \geq 10)$, then X approx. $\sim N(n p, n p(1-p))$.

If $Y=\frac{X}{n}$ is the proportion of successes, then

$$
E(Y)=\frac{1}{n} E(X)=\frac{n p}{n}=p
$$

and $\operatorname{Var}(Y)=\frac{1}{n^{2}} \operatorname{Var}(X)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$
and so Y approx. $\sim N\left(p, \frac{p(1-p)}{n}\right)$.
If \hat{p} is the observed proportion of successes in n trials, and π is the population proportion, then a 95% confidence interval for π is $\left(\hat{p}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$
[by the same reasoning as in (1)]
(6) Mean of a Poisson distribution (using a Normal approximation)
$X \sim P o(\lambda)$ approx. $\sim N(\lambda, \lambda)$
If $\hat{\lambda}$ is the observed value of X [$\hat{\lambda}$ should be sufficiently large to justify the Normal approximation; generally ≥ 20], then a 95% confidence interval for λ is $(\hat{\lambda}-1.96 \sqrt{\hat{\lambda}}, \hat{\lambda}+1.96 \sqrt{\hat{\lambda}})$
(7) Variance/standard deviation of a Normal distribution If $X \sim N\left(\mu, \sigma^{2}\right)$ and s^{2} is obtained from a sample of size n, then it can be shown that
$\chi_{n-1}^{2}(0.025)<\frac{(n-1) s^{2}}{\sigma^{2}}<\chi_{n-1}^{2}(0.975)$ with 95% probability, so that a 95% confidence interval for σ^{2} is $\left(\frac{(n-1) s^{2}}{\chi_{n-1}^{2}(0.975)}, \frac{(n-1) s^{2}}{\chi_{n-1}^{2}(0.025)}\right)$
and a 95% confidence interval for σ is $\left(\frac{s \sqrt{n-1}}{\sqrt{\chi_{n-1}^{2}(0.975)}}, \frac{s \sqrt{n-1}}{\sqrt{\chi_{n-1}^{2}(0.025)}}\right)$

