Confidence Intervals (3 pages; 16/4/16)

(1) Mean of a Normal distribution with known variance

$$\begin{split} X \sim N(\mu, \sigma^2) \Rightarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \\ \Rightarrow \mu - 1.96 \frac{\sigma}{\sqrt{n}} < \overline{x} < \mu + 1.96 \frac{\sigma}{\sqrt{n}} \quad \text{with 95\% probability} \\ \text{Then, for given } \overline{x}, \ \mu < \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}} \quad \& \ \mu > \overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}; \\ \text{ie } \overline{x} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}} \text{ in 95\% of cases (note that} \\ \mu \text{ is fixed: we shouldn't say that it lies within the above interval with 95\% probability - the probability is either 0 or 1 for a \end{split}$$

particular \overline{x})

Thus a 95% confidence interval for μ is

$$(\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}})$$

(assuming that a symmetrical interval is required).

(2) Mean of a Normal distribution with unknown variance, where the sample is large

As the sample is large (usually taken to be ≥ 30), s (based on a divisor of n - 1) can be assumed to be a reasonably good approximation to σ , so that a 95% confidence interval for μ is $(\overline{x} - 1.96\frac{s}{\sqrt{n}}, \overline{x} + 1.96\frac{s}{\sqrt{n}})$

(3) Mean of an unknown distribution (with unknown variance), where the sample is large

As the sample size is large, the Central Limit theorem says that \overline{X} approx. $\sim N(\mu, \frac{\sigma^2}{n})$ [$n \ge 30$ also applies here] and s can be

assumed to be a reasonably good approximation to σ (again, as the sample size is large).

A 95% confidence interval for μ is then $(\overline{x} - 1.96\frac{s}{\sqrt{n}}, \overline{x} + 1.96\frac{s}{\sqrt{n}})$; ie as for (2) (so, for practical purposes, it doesn't matter whether the distribution is Normal or not).

(4) Mean of a Normal distribution with unknown variance, where the sample is small

To reflect the greater uncertainly caused by approximating σ by s when the sample is small, the *t*-distribution is used, with

v = n - 1 degrees of freedom.

Eg, for v = 20, a 95% confidence interval for μ is

 $(\bar{x} - 2.086 \frac{s}{\sqrt{n}}, \bar{x} + 2.086 \frac{s}{\sqrt{n}});$

(Note that the underlying distribution has to be Normal, in order for the *t*-distribution to apply. As the sample size increases, the

t-value tends to the *z*-value.)

(5) Binomial proportion, for a large sample (using a Normal approximation)

Let $X \sim B(n, p)$. If *n* is large and *p* is not too small, in such a way that a Normal approximation is appropriate (this will usually be the case if $n \ge 50 \& np \ge 10$), then X approx. $\sim N(np, np(1-p))$.

If
$$Y = \frac{X}{n}$$
 is the proportion of successes, then
 $E(Y) = \frac{1}{n}E(X) = \frac{np}{n} = p$
and $Var(Y) = \frac{1}{n^2}Var(X) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$

fmng.uk

and so *Y* approx. $\sim N(p, \frac{p(1-p)}{n})$.

If \hat{p} is the observed proportion of successes in *n* trials, and π is the population proportion, then a 95% confidence interval for π is

$$(\hat{p} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$$

[by the same reasoning as in (1)]

(6) Mean of a Poisson distribution (using a Normal approximation)

 $X \sim Po(\lambda)$ approx. $\sim N(\lambda, \lambda)$

If $\hat{\lambda}$ is the observed value of X [$\hat{\lambda}$ should be sufficiently large to justify the Normal approximation; generally ≥ 20], then a 95% confidence interval for λ is ($\hat{\lambda} - 1.96\sqrt{\hat{\lambda}}, \hat{\lambda} + 1.96\sqrt{\hat{\lambda}}$)

(7) Variance/standard deviation of a Normal distribution

If $X \sim N(\mu, \sigma^2)$ and s^2 is obtained from a sample of size *n*, then it can be shown that

 $\chi^2_{n-1}(0.025) < \frac{(n-1)s^2}{\sigma^2} < \chi^2_{n-1}(0.975)$ with 95% probability,

so that a 95% confidence interval for σ^2 is $(\frac{(n-1)s^2}{\chi^2_{n-1}(0.975)}, \frac{(n-1)s^2}{\chi^2_{n-1}(0.025)})$ and a 95% confidence interval for σ is $(\frac{s\sqrt{n-1}}{\sqrt{\chi^2_{n-1}(0.975)}}, \frac{s\sqrt{n-1}}{\sqrt{\chi^2_{n-1}(0.025)}})$