Complex Numbers Q25 - Problem/H (16/6/23)

Referring to the diagram, use complex numbers to prove that the diagonal OC of the rhombus OACB bisects the angle OAB.

Solution

Let $z \& w$ be the complex numbers represented by the points A \& B. Write $z+w=r e^{i \theta}+r e^{i(\theta+\alpha)}$, where $\alpha=\angle A O B$ [aiming to show that $\arg (z+w)$ will be $\theta+\frac{\alpha}{2}$]

Then $z+w=r e^{i\left(\theta+\frac{\alpha}{2}\right)}\left(e^{-i \frac{\alpha}{2}}+e^{i \frac{\alpha}{2}}\right)$
$=r e^{i\left(\theta+\frac{\alpha}{2}\right)} \cdot 2 \cos \left(\frac{\alpha}{2}\right)$,
and hence $\arg (z+w)=\theta+\frac{\alpha}{2}=\frac{1}{2}(\theta+[\theta+\alpha])$
$=\frac{1}{2}(\arg z+\arg w)$
Then, as C represents $z+w$, $O C$ bisects the angle OAB.

