Complex Numbers - Q2 [6 marks](22/6/21)

Exam Boards

OCR : Pure Core (Year 1)
MEI: Core Pure (Year 1)
AQA: Pure (Year 1)
Edx: Core Pure (Year 1)
$1+3 i$ is a root of the equation $z^{3}+p z+q=0$ (where $\mathrm{p} \& \mathrm{q}$ are real). Find the other roots, and the values of $\mathrm{p} \& \mathrm{q}$ [6 marks]

Solution

As the coefficients of the equation are real, the conjugate of $1+3 i$: $1-3 i$ will also be a root. [1 mark]

Then the equation can be written as
$(z-[1+3 i])(z-[1-3 i])(z-\alpha)=0$, where α is the 3rd root. [1 mark]

Expanding this gives $\left(z^{2}-2 z+10\right)(z-\alpha)=0$ [1 mark] and hence $z^{3}-(2+\alpha) z^{2}+(10+2 \alpha) z-10 \alpha=0$

Comparing the coefficients with those of $z^{3}+p z+q=0$, we see that $\alpha=-2$, so that $p=6$ and $q=20$ [3 marks]

Alternative method

Using the standard results that the roots $\alpha, \beta \& \gamma$ of the equation $a z^{3}+b z^{2}+c z+d=0$ satisfy $\alpha+\beta+\gamma=-\frac{b}{a}, \alpha \beta+\alpha \gamma+$ $\beta \gamma=\frac{c}{a}$ and $\alpha \beta \gamma=-\frac{d}{a}$
$(1+3 i)+(1-3 i)+\alpha=0[$ since $b=0]$
Hence $\alpha=-2$
Also $(1+3 i)(1-3 i)-2(1+3 i)-2(1-3 i)=p$,
so that $10-2-2=p$ and $p=6$
And $-2(1+3 i)(1-3 i)=-q$,
so that $q=2(10)=20$

Notes

(a) A cubic function $y=f(x)$ with real coefficients will cross the x-axis at least once, and so $f(x)=0$ has at least one real root (α, say). Then, factorising $f(x)$ as $(x-\alpha) g(x)$ means that, if β is a complex root of $f(x)=0$, then β^{*}, the complex conjugate of β, must be the other root (considering the two roots derived from the quadratic formula).
[This could also have been written as $y=f(z)$ etc]
(b) $\left(^{*}\right)$ follows from expanding $(z-\alpha)(z-\beta)(z-\gamma)=0$, and is in fact true whether the coefficients $a, b \& c$ are real or complex.

