Complex Numbers Q17– Practice/Y1/E (22/5/21)

Solve the equation $z^2 - 2z + 2 = 0$

(a) by completing the square

(b) by equating real & imaginary parts

Solve the equation $z^2 - 2z + 2 = 0$

(a) by completing the square(b) by equating real & imaginary parts

Solution

(a)
$$z^2 - 2z + 2 = 0$$

 $\Rightarrow (z - 1)^2 + 1^2 = 0$
 $\Rightarrow ([z - 1] + i)([z - 1] - i) = 0$
 $\Rightarrow z = 1 - i \text{ or } 1 + i$

(b) Let
$$z = a + bi$$

Then $(a + bi)^2 - 2(a + bi) + 2 = 0$
 $\Rightarrow a^2 - b^2 + 2abi - 2a - 2bi + 2 = 0$
equating real parts: $a^2 - b^2 - 2a + 2 = 0$ (1)
equating imaginary parts: $2ab - 2b = 0$ (2)
(2) $\Rightarrow b(a - 1) = 0 \Rightarrow b = 0$ or $a = 1$
From (1), $b = 0 \Rightarrow a^2 - 2a + 2 = 0$

(this can be excluded, as *a* is real and there are no real solutions to the quadratic equation)

 $a = 1 \Rightarrow 1 - b^2 = 0 \Rightarrow b = \pm 1$ Hence $z = 1 \pm i$