Collisions - Conditions for reversal of direction

(6 pages; 24/6/20)
Particles A and B, of masses $k m \& m$, respectively (where $k>0$), are travelling on the same straight path, on a smooth surface, and collide. The coefficient of restitution between A and B is e. Investigate the conditions that must apply in order for A to change direction, in the following situations:
(I) A has speed u and B is stationary
(II) A and B are moving in the same direction; A has speed λu ($\lambda>1$) and B has speed u.
(III) A and B are moving in opposite directions; A has speed θu and B has speed u.

Solution

(I)
$C o M \Rightarrow k u=k v+w(1) \quad \& N L I \Rightarrow w-v=e u$
$(1)-(2) \Rightarrow(k+1) v=(k-e) u$
$\Rightarrow v=\frac{(k-e) u}{k+1} \quad$; so $v<0 \Leftrightarrow e>k$
Thus if $k \geq 1$, a change of direction isn't possible.
If $k<1$, a change of direction will be possible provided e is sufficiently big. Note that a bigger e means that A and B bounce off each other more.
(II)

$\operatorname{CoM} \Rightarrow \lambda k u+u=k v+w(1) \quad \& N L I \Rightarrow w-v=e(\lambda-1) u$
(1) $-(2) \Rightarrow(k+1) v=u(\lambda k+1-e \lambda+e)$
$\Rightarrow v=\frac{u(\lambda k+1-e \lambda+e)}{k+1}$
So $v<0 \Leftrightarrow \lambda k+1-e \lambda+e<0$
$\Leftrightarrow \lambda k+1<e(\lambda-1)$
$\Leftrightarrow e>\frac{\lambda k+1}{\lambda-1} \quad(\lambda>1, k>0)$

Conclusions

(a) A will never reverse direction if $\frac{\lambda k+1}{\lambda-1} \geq 1$ (as e cannot exceed

1) $\Leftrightarrow \lambda k+1 \geq \lambda-1$ (as $\lambda>1) \Leftrightarrow \lambda(1-k) \leq 2$

So A will never reverse direction if $k \geq 1$ or $\lambda \leq 2$ (as $k>0$, so that $1-k<1$).
(b) Suppose that the momentum of A equals that of B, so that $\lambda k=1$. Then $\frac{\lambda k+1}{\lambda-1}=1 \Leftrightarrow \frac{2}{\lambda-1}=1 \Leftrightarrow 2=\lambda-1$; ie $\lambda=3$

So a critical point occurs when the momentums are equal and $\lambda=3$. The following table can be produced (the results are derived later):

Reversal of direction of A

	$\lambda k<1$	$\lambda k=1$	$\lambda k>1$
$\lambda \leq 2$	X	X	X
$2<\lambda<3$	Y^{*}	X	X
$\lambda=3$	YY	X	X
$\lambda>3$	YY	YY	Y^{*}

X: never

Y: for big enough e, but with further constraints on $\lambda \& k$ YY: for big enough e
$* k<\frac{\lambda-2}{\lambda}$
[And for reversal to occur, $0<k<1$, in all cases.]

Observations from table

(i) When the momentum of A is less than that of B :

A will reverse direction if $\lambda \geq 3$ (ie if the speed of A is sufficiently high) and e is big enough.

If $\lambda<3, A$ will reverse direction for suitable $\lambda \& k$ (provided e is big enough).
(ii) When A and B have the same momentum:

A will reverse direction if $\lambda>3$ (ie if the speed of A is sufficiently high) and e is big enough.

If $\lambda \leq 3$, A will never reverse direction.
(iii) When the momentum of A is greater than that of B :

If $\lambda>3$, A will reverse direction for suitable $\lambda \& k$ (provided e is big enough).

If $\lambda \leq 3$, A will never reverse direction.

Derivation of results in the table

($\lambda>1, k>0$ throughout)
(A) When $\lambda k=1, \frac{\lambda k+1}{\lambda-1}=\frac{2}{\lambda-1}$

Then reversal is possible when $\frac{2}{\lambda-1}<1 \Leftrightarrow 2<\lambda-1$ (as $\lambda>1$); ie $\lambda>3$ (this enables the $\lambda k=1$ column of the table to be completed).
(B) Suppose that $\lambda k<1$
$\frac{\lambda k+1}{\lambda-1}<1 \Leftrightarrow \lambda k+1<\lambda-1 \Leftrightarrow \lambda k<\lambda-2$ (*) *
When $\lambda \geq 3$, RHS of $\left({ }^{*}\right) \geq 1$ and LHS <1, so that $\left({ }^{*}\right)$ is always satisfied (and reversal occurs for sufficiently big e).

When $\lambda<3:\left(^{*}\right) \Leftrightarrow k<\frac{\lambda-2}{\lambda}($ eg if $\lambda=2.5, k<0.2)$
ie reversal occurs (for sufficiently big e) if k is sufficiently small.
(C) Suppose that $\lambda k>1$

Then, as before, $\frac{\lambda k+1}{\lambda-1}<1 \Leftrightarrow \lambda k<\lambda-2$ ($\left.^{*}\right)$
When $\lambda \leq 3$, RHS of $\left({ }^{*}\right) \leq 1$ and LHS >1, so that $\left({ }^{*}\right)$ is never satisfied.

When $\lambda>3:\left(^{*}\right) \Leftrightarrow k<\frac{\lambda-2}{\lambda}(\operatorname{eg}$ if $\lambda=4, k<0.5)$ ie reversal occurs (for sufficiently big e) if k is sufficiently small.
(III)

($\theta>1$ [ie, without loss of generality, the faster moving particle is assumed to arrive from the left] and $k>0$)
$\operatorname{CoM} \Rightarrow \theta k u-u=k v+w(1) \quad \& N L I \Rightarrow w-v=e(\theta+1) u$
(1) $-(2) \Rightarrow(k+1) v=u(\theta k-1-e \theta-e)$
$\Rightarrow v=\frac{u(\theta k-1-e \theta-e)}{k+1}$

So $v<0 \Leftrightarrow \theta k-1-e \theta-e<0$
$\Leftrightarrow \theta k-1<e(\theta+1)$
$\Leftrightarrow e>\frac{\theta k-1}{\theta+1}$

Conclusions

A will reverse direction if $\frac{\theta k-1}{\theta+1}<1$ (for sufficiently big e)
$\Leftrightarrow \theta k-1<\theta+1 \Leftrightarrow \theta(k-1)<2$
If $\boldsymbol{k} \leq 1$, then A will reverse direction, for sufficiently big e.

If $\boldsymbol{k} \geq \mathbf{3}$, then \mathbf{A} will never reverse direction (as $\theta>1$).
If $1<k<3, \theta(k-1)<2 \Leftrightarrow k<\frac{2}{\theta}+1=\frac{\theta+2}{\theta}$
The condition $k<\frac{\theta+2}{\theta}$ (and sufficiently big e) is in fact necessary and sufficient for A to reverse direction.

