Collisions - Conditions for reversal of direction

(6 pages; 24/6/20)

Particles A and B, of masses km & m, respectively (where k > 0), are travelling on the same straight path, on a smooth surface, and collide. The coefficient of restitution between A and B is *e*. Investigate the conditions that must apply in order for A to change direction, in the following situations:

(I) A has speed *u* and B is stationary

(II) A and B are moving in the same direction; A has speed λu ($\lambda > 1$) and B has speed u.

(III) A and B are moving in opposite directions; A has speed θu and B has speed u.

Solution

(I)

100

$$CoM \Rightarrow ku = kv + w (1) \quad \& \quad NLI \Rightarrow w - v = eu (2)$$

(1) - (2) $\Rightarrow (k+1)v = (k-e)u$
 $\Rightarrow v = \frac{(k-e)u}{k+1}$; so $v < 0 \Leftrightarrow e > k$

Thus if $k \ge 1$, a change of direction isn't possible.

If k < 1, a change of direction will be possible provided e is sufficiently big. Note that a bigger e means that A and B bounce off each other more.

 $CoM \Rightarrow \lambda ku + u = kv + w (1) \quad \& \quad NLI \Rightarrow w - v = e(\lambda - 1)u (2)$ $(1) - (2) \Rightarrow (k + 1)v = u(\lambda k + 1 - e\lambda + e)$ $\Rightarrow v = \frac{u(\lambda k + 1 - e\lambda + e)}{k + 1}$ So $v < 0 \Leftrightarrow \lambda k + 1 - e\lambda + e < 0$ $\Leftrightarrow \lambda k + 1 < e(\lambda - 1)$ $\Leftrightarrow e > \frac{\lambda k + 1}{\lambda - 1} \quad (\lambda > 1, k > 0)$

Conclusions

(a) A will never reverse direction if $\frac{\lambda k+1}{\lambda-1} \ge 1$ (as *e* cannot exceed 1) $\Leftrightarrow \lambda k + 1 \ge \lambda - 1$ (as $\lambda > 1$) $\Leftrightarrow \lambda(1 - k) \le 2$ So A will never reverse direction if $k \ge 1$ or $\lambda \le 2$ (as $k \ge 0$ so

So A will never reverse direction if $k \ge 1$ or $\lambda \le 2$ (as k > 0, so that 1 - k < 1).

(b) Suppose that the momentum of A equals that of B, so that $\lambda k = 1$. Then $\frac{\lambda k+1}{\lambda-1} = 1 \Leftrightarrow \frac{2}{\lambda-1} = 1 \Leftrightarrow 2 = \lambda - 1$; *ie* $\lambda = 3$ So a critical point occurs when the momentums are equal and

 $\lambda = 3$. The following table can be produced (the results are derived later):

	$\lambda k < 1$	$\lambda k = 1$	$\lambda k > 1$
$\lambda \leq 2$	Х	Х	Х
$2 < \lambda < 3$	Y*	Х	Х
$\lambda = 3$	YY	Х	Х
$\lambda > 3$	YY	YY	Y*

Reversal of direction of A

X: never

Y: for big enough *e*, but with further constraints on $\lambda \& k$

YY: for big enough *e*

$$*k < \frac{\lambda-2}{\lambda}$$

[And for reversal to occur, 0 < k < 1, in all cases.]

Observations from table

(i) When the momentum of A is less than that of B:

A will reverse direction if $\lambda \ge 3$ (ie if the speed of A is sufficiently high) and *e* is big enough.

If $\lambda < 3$, A will reverse direction for suitable $\lambda \& k$ (provided *e* is big enough).

(ii) When A and B have the same momentum:

A will reverse direction if $\lambda > 3$ (ie if the speed of A is sufficiently high) and *e* is big enough.

If $\lambda \leq 3$, A will never reverse direction.

(iii) When the momentum of A is greater than that of B:

If $\lambda > 3$, A will reverse direction for suitable $\lambda \& k$ (provided *e* is big enough).

If $\lambda \leq 3$, A will never reverse direction.

Derivation of results in the table

 $(\lambda > 1, k > 0$ throughout)

(A) When $\lambda k = 1$, $\frac{\lambda k + 1}{\lambda - 1} = \frac{2}{\lambda - 1}$

Then reversal is possible when $\frac{2}{\lambda-1} < 1 \Leftrightarrow 2 < \lambda - 1$ (as $\lambda > 1$); ie $\lambda > 3$ (this enables the $\lambda k = 1$ column of the table to be completed).

(B) Suppose that $\lambda k < 1$ $\frac{\lambda k+1}{\lambda-1} < 1 \Leftrightarrow \lambda k + 1 < \lambda - 1 \Leftrightarrow \lambda k < \lambda - 2$ (*)

When $\lambda \ge 3$, RHS of (*) ≥ 1 and LHS < 1, so that (*) is always satisfied (and reversal occurs for sufficiently big *e*).

When $\lambda < 3$: (*) $\Leftrightarrow k < \frac{\lambda - 2}{\lambda}$ (eg if $\lambda = 2.5, k < 0.2$)

ie reversal occurs (for sufficiently big *e*) if *k* is sufficiently small.

(C) Suppose that $\lambda k > 1$

Then, as before, $\frac{\lambda k+1}{\lambda-1} < 1 \Leftrightarrow \lambda k < \lambda - 2$ (*)

When $\lambda \leq 3$, RHS of (*) ≤ 1 and LHS > 1, so that (*) is never satisfied.

When
$$\lambda > 3$$
: (*) $\Leftrightarrow k < \frac{\lambda - 2}{\lambda}$ (eg if $\lambda = 4, k < 0.5$)

ie reversal occurs (for sufficiently big *e*) if *k* is sufficiently small.

 $(\theta > 1$ [ie, without loss of generality, the faster moving particle is assumed to arrive from the left] and k > 0)

$$CoM \Rightarrow \theta ku - u = kv + w (1) \quad \& \quad NLI \Rightarrow w - v = e(\theta + 1)u (2)$$
$$(1) - (2) \Rightarrow (k + 1)v = u(\theta k - 1 - e\theta - e)$$
$$\Rightarrow v = \frac{u(\theta k - 1 - e\theta - e)}{k + 1}$$

So
$$v < 0 \Leftrightarrow \theta k - 1 - e\theta - e < 0$$

 $\Leftrightarrow \theta k - 1 < e(\theta + 1)$
 $\Leftrightarrow e > \frac{\theta k - 1}{\theta + 1}$

Conclusions

A will reverse direction if $\frac{\theta k - 1}{\theta + 1} < 1$ (for sufficiently big *e*) $\Leftrightarrow \theta k - 1 < \theta + 1 \Leftrightarrow \theta (k - 1) < 2$

If $k \leq 1$, then A will reverse direction, for sufficiently big *e*.

If $k \ge 3$, then A will never reverse direction (as $\theta > 1$).

If
$$1 < k < 3$$
, $\theta(k-1) < 2 \Leftrightarrow k < \frac{2}{\theta} + 1 = \frac{\theta+2}{\theta}$

The condition $k < \frac{\theta+2}{\theta}$ (and sufficiently big *e*) is in fact necessary and sufficient for A to reverse direction.