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Centre of Mass - Part 1 (13 pages; 7/8/17) 

[See separate Contents document; Part 2 contains proofs] 

 

(1) Objects for which the centre of mass may be determined 

(a) Collection of point masses (1D, 2D or 3D) 

(b) Solid (or hollow) object 

(c) Lamina (a thin plane object – eg a piece of paper) 

(d) A rod (of relatively small radius) 

(e) A composite body (a combination of (a)-(d)) 

 

(2) Centre of mass of a collection of point masses 

Suppose that there are 3 point masses with coordinates and 

weights as shown in Figure 1 (the line has no weight). 

 

 

 

 

 

 

 

 

Figure 1 

 

Consider a point mass having a weight equal to the total of the 

weights of the point masses (ie 9𝑔 in this case). 
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The centre of mass of the original point masses can be considered 

to be the location of the 9𝑔 point mass, such that it has the same 

moment about 𝑂 as that of the original point masses.  

Total (clockwise) moment of original point masses 

= 4𝑔(𝑎) + 3𝑔(3𝑎) + 2𝑔(4𝑎) = 21𝑔𝑎  

Let centre of mass be at (𝑥 , 0) 

Then moment of 9𝑔 point mass  =  (9g)𝑥 

Hence  21𝑔𝑎 = (9g)𝑥    and so  𝑥 =  
7

3
𝑎  

 

In general,  if the masses  𝑚1,  𝑚2,  … , 𝑚𝑛  are positioned at the 

points  (𝑥1, 0) ,  (𝑥2, 0),  … , (𝑥𝑛, 0), then 

M𝑥 = ∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖=1    , where  M = ∑ 𝑚𝑖

𝑛
𝑖=1  

 

Alternative approach 

The centre of mass can also be thought of as the weighted average 

of the positions of the individual point masses, where the weights 

are just the relative masses. 

Thus   𝑥 = ∑ (
𝑚𝑖

𝑀
)𝑥𝑖

𝑛
𝑖=1  

 

(3) Collection of point masses in 2D  

𝑥  & 𝑦  can be found separately: 

(
𝑥
𝑦

) =  
1

𝑀
 (

∑ 𝑚𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑚𝑖𝑦𝑖
𝑛
𝑖=1

)  

This can be extended simply to 3D. 
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Example: Find the centre of mass of the following set of point 

masses 

 

 

 

 

 

 

 

Figure 2 

 

Solution 

(3+4+5)(
𝑥̅
𝑦̅

) = 3(
0
2

) + 4 (
0
0

) + 5 (
3
0

) 

⇒ 12 (
𝑥̅
𝑦̅

) = (
15
6

) 

⇒ (
𝑥̅
𝑦̅

) = (
1.25
0.5

) 

 

Note the following advantages of using column vectors, rather 

than determining 𝑥̅  and 𝑦̅  separately: 

(i) There is less chance of mixing up the weights and the 

distances. 

(ii) There is less chance of missing a component for 𝑥 𝑜𝑟 𝑦. 

(iii) It provides a check that no component has been missed, if the 

centre of mass for either 𝑥 𝑜𝑟 𝑦  can be deduced from symmetry. 
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(4) Centre of mass of a solid (or hollow) object 

The first consideration will be whether there is any symmetry 

(when the centre of mass will lie on the axis of symmetry). 

Otherwise, the formulae booklet may need to be consulted. The 

main ones are listed here. These formulae are generally derived 

by integration (see Part 2). 

Solid hemisphere of radius 𝑟 : 
3

8
𝑟 from the centre 

Hollow hemisphere of radius 𝑟 : 
1

2
𝑟 from the centre 

Solid cone or pyramid of height ℎ: 
1

4
ℎ above the base 

Hollow cone or pyramid of height ℎ: 
1

3
ℎ above the base 

 

(5) Centre of mass of a lamina 

Once again, symmetry needs to be considered. The standard 

formulae are given below. These can be derived by integration, or 

sometimes using vectors (see Part 2). 

Triangular lamina: 
2

3
 along the median from any vertex (the 

median is the line from the vertex to the mid-point of the opposite 

side).  

Sector of circle of radius 𝒓 , with angle at the centre of 2𝛼 (in 

radians): 
2𝑟𝑠𝑖𝑛𝛼

3𝛼
 from the centre  

[Special case: a semi-circular lamina of radius 𝒓: 
4𝑟

3𝜋
 from the 

centre.] 
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(6) Centre of mass of a uniform triangular lamina 

There are several ways of locating this (see Part 2 for proofs). 

(a) The average of the coordinates of the vertices. 

(b) Special case of a right-angled triangular lamina: 
1

3
 of the way 

along the sides creating the right angle, starting at the right angle 

(see Figure 3) [this can be demonstrated by applying (a)]. 

 

 

 

 

 

 

 

Figure 3 

(c)  
2

3
 of the way along the median from any one of the vertices (a 

median connects a vertex with the midpoint of the opposite side, 

and the 3 medians meet at the centre of mass; this is true for all 

triangles, but is illustrated for a right-angled triangle in Figure 3. 

Notes 

(i) The 
1

3
 in (b) is nothing to do with G (the centre of mass) being  

1

3
 of the way along the median from the side to the vertex). 

(ii) Be careful to distinguish between: 

(a) a triangular lamina 

(b) a triangular framework or rods (see below) 

(c) point masses at the vertices of a triangle 
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Example: Find the position of the centre of mass of the uniform 

lamina shown  

 

 

 

 

 

 

 

 

Figure 4 

 

Method 1 

Taking the origin to be the bottom left-hand corner. 

By symmetry, 𝑥  = 9 

𝑦  will be 
2

3
 of the way down the vertical median 

sin𝜃 = 0.8 =  
4

5
 ⇒  tan𝜃 =  

4

3
 

⇒ height of triangle = 
4

3
 x 9 = 12 

Hence 𝑦 = 4 

Method 2 

As the height is 12, the coordinates of the vertices are (0,0) , 

(18,0) & (9,12) 

Hence 𝑥 = 
1

3
(0 + 18 + 9) = 9 

And 𝑦 =  
1

3
 (0 + 0 + 12) = 4 
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Exercise: Where would the centre of mass be if all the weight of 

the lamina was concentrated equally at the 3 corners? 

𝑥 =  
1

3
 (0) +  

1

3
 (9) +  

1

3
 (18)  

 = 9 (as expected, by symmetry) 

𝑦 = 
1

3
 (0) +  

1

3 
 (12) +  

1

3 
 (0) =   4  (as before) 

 

(7) Centre of mass of a uniform sector 

The centre of mass of a uniform sector of a circle of radius 𝑟 and 

angle 2𝛼  is 
2𝑟𝑠𝑖𝑛𝛼

3𝛼
 from the centre (see Part 2 for proof). 

As 𝛼 → 0, 
2𝑟𝑠𝑖𝑛𝛼

3𝛼
→ 

2𝑟

3
 ; the sector tends to a triangle (see Figure 7) 

and the position of the centre of mass tends to 
2

3
𝑟 from the centre 

(ie 
2

3
 of the way along the median from the vertex). 

Special case: semi-circle (𝛼 =  
𝜋

2
 ): 𝑥 =  

4𝑟

3𝜋
 

 

 

 

 

 

 

Figures 5 & 6 

 

Figure 7 
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(8) Centre of mass of a rod 

If the rod can be assumed to be uniform (ie its mass is distributed 

uniformly), then the centre of mass will simply be at the mid-

point. 

If this isn't the case, then integration would be needed. 

 

(9) Centre of mass of a uniform circular arc 

The centre of mass of a uniform circular arc, where the radius is 𝑟 

and the angle is 2𝛼 is 
𝑟𝑠𝑖𝑛𝛼

𝛼
 from the centre (see Part 2 for proof). 

As 𝛼 → 0, 
𝑟𝑠𝑖𝑛𝛼

𝛼
→ 𝑟; the arc tends to a point, and the position of 

the centre of mass tends to 𝑟 from the centre. 

 

 

Figure 8 

 

(10) Centre of mass of a composite body 

The composite body could in theory be made up of any 

combination of solids, laminas or rods (though in practice it tends 

to be either a combination of solids, or a combination of laminas, 

or a combination of rods (a 'framework'). 
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The procedure is to treat the composite body as a collection of 

point masses, located at the centre of mass of each component. 

Volume, area or length may be used as a proxy for mass (in the 

case of solids, laminas & rods, respectively). 

 

Example (Lamina) 

 

 

Figure 9 

 

CoM of A:  (
2
5

2

) 

CoM of B: (

1

3
(0 + 4 + 0)

1

3
 (5 + 5 + 7)

) = (

4

3
17

3

) 

Area of A = 20 ; Area of B = 1/2 (4)(2) = 4 

CoM of trapezium = 
1

24
(

20(2) + 4(
4

3
)

20 (
5

2
) + 4(

17

3
)
) = (

17

9
109

36

) 
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Example (Framework) 

 

 

 

 

 

 

Figure 10 

 

The centres of mass of the 3 sides are: 

(
0

1.5
)  , (

2
0

) &  (
2

1.5
) 

The centre of mass of the framework   

=
1

(3+4+5)
 (

3(0) + 4(2) + 5(2)

3(1.5) + 4(0) + 5(1.5)
) = (

1.5
1

)  

 

Example: Centre of mass of a rectangular lamina with a square cut 

out of it 

 

 

Figure 11 
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Let the centre of mass of the required shape be (
𝑥̅
𝑦̅

) 

The centre of mass of A+B = (
3
2

) 

The centre of mass of B = (
4
2

) 

Area of A+B = 24 

Area of B = 4 

Then  (
3
2

) = 
1

24
 (

4(4) + 20𝑥̅

4(2) + 20𝑦̅
) 

Hence (
72
48

) = (
16 + 20𝑥̅
8 + 20𝑦̅

) 

So that (
𝑥̅
𝑦̅

) = (
2.8
2

) 

Alternative approach 

The missing square can be treated as having a negative weight, so 

that  20 (
𝑥̅
𝑦̅

) = 24 (
3
2

) − 4 (
4
2

) etc 

 

(11) Hanging a lamina from one of its corners 

  

Figure 12 
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Figure 13 

 

The centre of mass of the above lamina can be found to be at  

(
4

3
 , 1).  When the lamina is hung from C, the centre of mass G will 

be directly below C: were it not to be, then taking moments about 

C would produce a non-zero moment of the weight at G. 

 

To find the angle 𝜃 that the side AC makes with the vertical, it can 

be easier to draw in the line from G to C, without actually showing 

the triangle in its hanging position (this has been done in an exam 

mark scheme, for example).  

𝑡𝑎𝑛𝜃 =
1

(
4

3
)

=
3

4
⇒ 𝜃 = 36.9°(3𝑠𝑓)  
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(12) Toppling: Lamina on a rough slope 

 

 

Figure 14 

 

Block is on the point of toppling. If block is 4cm x 6cm, find 𝑡𝑎𝑛𝜃. 

 

Figure 15 

 

𝑡𝑎𝑛𝜃 =
2

3
  

⇒  𝜃 = 33.7° (3𝑠𝑓)  


