Binomial Distribution (7 pages; 16/2/17)
(1) $X \sim B(n, p)$ (discrete random variable)

$$
\begin{aligned}
\Rightarrow P(X=x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2, \ldots, n \\
& =0 \text { otherwise }
\end{aligned}
$$

Notes

(i) The 'Binomial coefficient', $\binom{n}{x}=\frac{n!}{x!(n-x)!}$ can also be written as ${ }^{n} C_{r}$
(ii) $1-p$ is often written as q
(iii) See Appendix B for a demonstration that $\sum P(X=x)=1$ (as is necessary for a probability distribution).

Example: A factory produces computer laptops. The probability of a laptop working properly is $p=0.6$ ("probability of success").
If there are $n=5$ laptops coming off the production line, and X is the number of working laptops, then $X \sim B(5,0.6)$ and the probability of at least one laptop working properly is

$$
\begin{aligned}
& 1-P(X=0)=1-\binom{5}{0}(0.6)^{0}(1-0.6)^{5-0} \\
& =1-(0.4)^{5}=0.98976=0.990(3 \mathrm{sf})
\end{aligned}
$$

(2) Derivation of the Binomial probability

Consider $P(X=3)$ in the above example.
For one particular ordering of the successes and failures; say SSFSF,
$P(S S F S F)=(0.6)(0.6)(0.4)(0.6)(0.4)=(0.6)^{3}(0.4)^{2}$
The possible orderings are:
SSSFF, SSFSF, SSFFS, SFSSF, SFSFS,
SFFSS, FSSSF, FSSFS, FSFSS, FFSSS
This is the number of ways of choosing 3 positions for S, out of the total of 5; ie $\binom{5}{3}=\frac{5!}{3!2!}$ (see Appendix A, for the derivation of this). Each ordering is equally likely, so that

$$
P(X=3)=\binom{5}{3}(0.6)^{3}(0.4)^{2}
$$

(3) Conditions that need to apply in order for the Binomial model to be valid
(i) The outcomes of the n trials must be random and independent of each other.
(ii) The probability of success must be constant over the n trials.

(4) Cumulative tables

See Appendix C.
To avoid manual calculations, note that
$P(X=3)=P(X \leq 3)-P(X \leq 2)$
(5) Mean of a Binomial Variable

If $X \sim B(n, p), E(X)=\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} x$
$=\sum_{x=1}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} x$
$=\sum_{x=1}^{n} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} x$
$=n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{(x-1)}(1-p)^{n-x}$
$=n p \sum_{x-1=0}^{n-1} \frac{(n-1)!}{(x-1)!(n-x)!} p^{(x-1)}(1-p)^{n-x}$
Let $u=x-1$ and $N=n-1$
Then $E(X)=n p \sum_{u=0}^{N} \frac{N!}{u!(N-u)!} p^{u}(1-p)^{N-u}$
$=n p \sum_{u} P(X=u)=n p$

(6) Variance of a Binomial Variable

$\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}=\mathrm{E}[\mathrm{X}(\mathrm{X}-1)+\mathrm{X}]-\mu^{2}=\mathrm{E}[\mathrm{X}(\mathrm{X}-1)]+\mu-\mu^{2}$
$=\left[\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} x(x-1)\right]+n p-(n p)^{2}$
$=\left[\sum_{x=2}^{n} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} x(x-1)\right]+n p-(n p)^{2}$
$\left.=n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{(x-2)}(1-p)^{n-x}\right]+n p-(n p)^{2}$
Let $u=x-2$ and $N=n-2$
Then $\operatorname{Var}(\mathrm{X})$
$\left.=n(n-1) p^{2} \sum_{u=0}^{N} \frac{N!}{u!(N-u)!} p^{u}(1-p)^{N-u}\right]+n p-(n p)^{2}$
$=n(n-1) p^{2} \sum_{u} P(X=u)+n p-(n p)^{2}=n(n-1) p^{2}+n p-$ $(n p)^{2}$
$=n p\{(n-1) p+1-n p\}=n p(1-p)$

(7) Approximations to the Binomial distribution

For large n and small p, the Binomial distribution can be approximated by the Poisson distribution. For large n and moderate p, the Binomial distribution can be approximated by the Normal distribution (though a smaller value of p can be tolerated if n is large enough).
See "Approximations to the Binomial and Poisson Distributions".

(8) Miscellaneous

(i) n is occasionally referred to as the index, and p as the parameter.

Appendix A: Derivation of $\binom{n}{r}$: the number of ways of choosing r items from n

Example of $\binom{\mathbf{5}}{\mathbf{3}}$

There are $5 \times 4 \times 3 \times 2 \times 1=5$! different orderings of ABCDE.
[There are 5 choices for the 1st position; then for each of these there are 4 choices for the 2 nd position etc.]
Now consider the number of different orderings of ABCCC.
The following all count as the same:
$B C_{1} C_{2} A C_{3}, B C_{1} C_{3} A C_{2}, B C_{2} C_{1} A C_{3}, B C_{2} C_{3} A C_{1}, B C_{3} C_{1} A C_{2}, B C_{3} C_{2} A C_{1}$ and similarly for $C A C B C$ etc

Thus there is a 3 ! duplication of the Cs.
So there are $\frac{5!}{3!}$ different orderings of ABCCC
Now consider the number of different orderings of BBCCC.

In the same way as above, there is a 2 ! duplication of the Bs.
Thus the number of ways of arranging BBCCC is $\frac{5!}{3!2!}$

Notes

(i) It can be shown that $\binom{n}{r}$ is the r th value in the nth row of Pascal's triangle (where r starts at 0 , and the nth row starts $1, n, \ldots$)
(ii) $\binom{5}{3}=\frac{5!}{3!2!}=\binom{5}{2}$, as the number of ways of choosing 3 positions for S (in the example used above) is the same as the number of ways of choosing 2 positions for F .

Consider also the symmetry of Pascal's triangle.
(iii) $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots[r \text { items }]}{r!}$

Thus, $\binom{20}{17}=\binom{20}{3}=\frac{20(19)(18)}{3!}$

Appendix B: Use of $\binom{\boldsymbol{n}}{\boldsymbol{r}}$ in the Binomial expansion

To show that $(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{r} b^{n-r}$:
eg $(a+b)^{5}=(a+b)(a+b)(a+b)(a+b)(a+b)$
The number of times that $a^{3} b^{2}$ appears in the expansion of this expression is the number of ways in which we can choose 3 out of the 5 brackets for the $a^{\prime} s$ (with remaining 2 brackets giving the $b^{\prime} s$); ie $\binom{5}{3}$
Note that when $q=1-p,(p+q)^{n}=\sum_{r=0}^{n}\binom{n}{r} p^{r} q^{n-r}$, but $(p+q)^{n}=1^{n}=1$

Thus, the Binomial probabilities add up to 1, as expected.

Appendix C: Cumulative tables

BINOMIAL CUMULATIVE DISTRIBUTION FUNCTION

The tabulated value is $\mathrm{P}(X \leq x)$, where X has a binomial distribution with index n and parameter p.

$p=$	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
$n=5, x=0$	0.7738	0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
1	0.9774	0.9185	0.8352	0.7373	0.6328	0.5282	0.4284	0.3370	0.2562	0.1875
2	0.9988	0.9914	0.9734	0.9421	0.8965	0.8369	0.7648	0.6826	0.5931	0.5000
3	1.0000	0.9995	0.9978	0.9933	0.9844	0.9692	0.9460	0.9130	0.8688	0.8125
4	1.0000	1.0000	0.9999	0.9997	0.9990	0.9976	0.9947	0.9898	0.9815	0.9688
$n=6, x=0$	0.7351	0.5314	0.3771	0.2621	0.1780	0.1176	0.0754	0.0467	0.0277	0.0156
1	0.9672	0.8857	0.7765	0.6554	0.5339	0.4202	0.3191	0.2333	0.1636	0.1094
2	0.9978	0.9842	0.9527	0.9011	0.8306	0.7443	0.6471	0.5443	0.4415	0.3438
3	0.9999	0.9987	0.9941	0.9830	0.9624	0.9295	0.8826	0.8208	0.7447	0.6563
4	1.0000	0.9999	0.9996	0.9984	0.9954	0.9891	0.9777	0.9590	0.9308	0.8906
5	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9982	0.9959	0.9917	0.9844
$n=7, x=0$	0.6983	0.4783	0.3206	0.2097	0.1335	0.0824	0.0490	0.0280	0.0152	0.0078
1	0.9556	0.8503	0.7166	0.5767	0.4449	0.3294	0.2338	0.1586	0.1024	0.0625
2	0.9962	0.9743	0.9262	0.8520	0.7564	0.6471	0.5323	0.4199	0.3164	0.2266
3	0.9998	0.9973	0.9879	0.9667	0.9294	0.8740	0.8002	0.7102	0.6083	0.5000
4	1.0000	0.9998	0.9988	0.9953	0.9871	0.9712	0.9444	0.9037	0.8471	0.7734
5	1.0000	1.0000	0.9999	0.9996	0.9987	0.9962	0.9910	0.9812	0.9643	0.9375
6	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9984	0.9963	0.9922

| $n=8, x=0$ | 0.6634 | 0.4305 | 0.2725 | 0.1678 | 0.1001 | 0.0576 | 0.0319 | 0.0168 | 0.0084 | 0.0039 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.9428 | 0.8131 | 0.6572 | 0.5033 | 0.3671 | 0.2553 | 0.1691 | 0.1064 | 0.0632 | 0.0352 |
| 2 | 0.9942 | 0.9619 | 0.8948 | 0.7969 | 0.6785 | 0.5518 | 0.4278 | 0.3154 | 0.2201 | 0.1445 |
| 3 | 0.9996 | 0.9950 | 0.9786 | 0.9437 | 0.8862 | 0.8059 | 0.7064 | 0.5941 | 0.4770 | 0.3633 |
| 4 | 1.0000 | 0.9996 | 0.9971 | 0.9896 | 0.9727 | 0.9420 | 0.8939 | 0.8263 | 0.7396 | 0.6367 |
| 5 | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9958 | 0.9887 | 0.9747 | 0.9502 | 0.9115 | 0.8555 |
| 6 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9987 | 0.9964 | 0.9915 | 0.9819 | 0.9648 |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9993 | 0.9983 | 0.9961 |
| $n=9, x=0$ | 0.6302 | 0.3874 | 0.2316 | 0.1342 | 0.0751 | 0.0404 | 0.0207 | 0.0101 | 0.0046 | 0.0020 |
| 1 | 0.9288 | 0.7748 | 0.5995 | 0.4362 | 0.3003 | 0.1960 | 0.1211 | 0.0705 | 0.0385 | 0.0195 |
| 2 | 0.9916 | 0.9470 | 0.8591 | 0.7382 | 0.6007 | 0.4628 | 0.3373 | 0.2318 | 0.1495 | 0.0898 |
| 3 | 0.9994 | 0.9917 | 0.9661 | 0.9144 | 0.8343 | 0.7297 | 0.6089 | 0.4826 | 0.3614 | 0.2539 |
| 4 | 1.0000 | 0.9991 | 0.9944 | 0.9804 | 0.9511 | 0.9012 | 0.8283 | 0.7334 | 0.6214 | 0.5000 |
| 5 | 1.0000 | 0.9999 | 0.9994 | 0.9969 | 0.9900 | 0.9747 | 0.9464 | 0.9006 | 0.8342 | 0.7461 |
| 6 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9987 | 0.9957 | 0.9888 | 0.9750 | 0.9502 | 0.9102 |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9986 | 0.9962 | 0.9909 | 0.9805 |
| 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9992 | 0.9980 |

$n=10, x=0$	0.5987	0.3487	0.1969	0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
1	0.9139	0.7361	0.5443	0.3758	0.2440	0.1493	0.0860	0.0464	0.0233	0.0107
2	0.9885	0.9298	0.8202	0.6778	0.5256	0.3828	0.2616	0.1673	0.0996	0.0547
3	0.9990	0.9872	0.9500	0.8791	0.7759	0.6496	0.5138	0.3823	0.2660	0.1719
4	0.9999	0.9984	0.9901	0.9672	0.9219	0.8497	0.7515	0.6331	0.5044	0.3770
5	1.0000	0.9999	0.9986	0.9936	0.9803	0.9527	0.9051	0.8338	0.7384	0.6230
6	1.0000	1.0000	0.9999	0.9991	0.9965	0.9894	0.9740	0.9452	0.8980	0.8281
7	1.0000	1.0000	1.0000	0.9999	0.9996	0.9984	0.9952	0.9877	0.9726	0.9453
8	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9983	0.9955	0.9893
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990

