Arithmetic Sequences \& Series (2 pages; 23/1/17)
(1) Terminology
$5,7,9,11,13 \ldots$ is an arithmetic sequence
$5+7+9+11+13+\cdots+43$ is an arithmetic series
(increasing by a 'common difference', 2)
(2) Ways of defining sequences eg $5,7,9,11,13 \ldots$

1 st term, $a=5$; common difference, $d=2$
First Approach
k th term, $a_{k}=a+(k-1) d=5+2(k-1)$
Second Approach
$a_{k+1}=a_{k}+2$ (inductive/iterative/recurrence formula); $a_{1}=5$
(for $k \geq 2$)
Third Approach
$a_{k}=2 k+c$ (deductive/direct formula)
$a_{1}=5$, so $5=2(1)+c$ and hence $c=3$ and $a_{k}=2 k+3$
Compare with straight line $y=2 x+3$
Common difference becomes the gradient
But constant term is ' $a_{0}^{\prime}=a_{1}-2=5-2=3$
(3) Sigma Notation
$\sum_{k=1}^{n} k=1+2+3+\cdots+n$

$$
\sum_{k=1}^{n}(2 k+3)=5+7+9+\cdots+(2 n+3)
$$

(4) Proof of $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ (Gauss' method)

Let $\sum_{k=1}^{n} k=S \quad$ Then $S=1+2+3+\cdots+n$
and also $S=n+(n-1)+(n-2) \ldots+1$
As $1+n=2+(n-1)=3+(n-2)=\cdots=n+1$,
$2 S=n(n+1) \quad$ and so $\quad \sum_{k=1}^{n} k=S=\frac{n(n+1)}{2}$
(5) Sum of general arithmetic series

Let $S=a+[a+d]+[a+2 d]+\cdots+[a+(n-1) d]$
$\& S=[a+(n-1) d]+[a+(n-2) d]+[a+(n-3) d]+\cdots+a$
So $2 S=n[2 a+(n-1) d] \quad$ and $S=\frac{n}{2}[2 a+(n-1) d]$

Alternative reasoning (informal):

As the terms go up at a steady rate, the sum will be the number of terms \times the average term
average term is $\frac{1}{2}(1$ st term + last term $)$
$=\frac{1}{2}(a+[a+(n-1) d])$
So $S=\frac{n}{2}[2 a+(n-1) d]$

