Algebra - Introduction (3 pages; 25/8/20)
(1) Many mathematical problems can be solved by expressing the given information in the form of one or more equations (or sometimes inequalities) - possibly using standard results such as Pythagoras' theorem - and then solving those equations. This is especially true of Mechanics.
(2) Avoiding division by zero [division by zero is 'undefined']

Example: Solve $\tan \theta=\sin \theta$, for $0 \leq \theta<360$

Solution

$\tan \theta=\sin \theta \Rightarrow \frac{\sin \theta}{\cos \theta}=\sin \theta$

Approach 1

Case 1: $\sin \theta \neq 0$
$\Rightarrow \frac{1}{\cos \theta}=1$ [both sides can only be divided by $\sin \theta$ if $\sin \theta \neq 0$]
$\Rightarrow 1=\cos \theta$
$\Rightarrow \theta=0$
Case 2: $\sin \theta=0$ (as this satisfies $\frac{\sin \theta}{\cos \theta}=\sin \theta$)
$\Rightarrow \theta=0$ or 180

Conclusion

$\theta=0$ or 180

Approach 2

$\tan \theta=\sin \theta \Rightarrow \frac{\sin \theta}{\cos \theta}-\sin \theta=0$
$\Rightarrow \sin \theta\left(\frac{1}{\cos \theta}-1\right)=0$
$\Rightarrow \sin \theta=0(A)$ or $\frac{1}{\cos \theta}-1=0(B)$
Then as for Approach 1.
(3) Rearranging an equation to get zero on one side

Example: Show that $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \equiv \cos 2 \theta$

Solution

Result to prove: $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}-\cos 2 \theta \equiv 0$
LHS $=\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
$=\cos ^{2} \theta\left(1-\tan ^{2} \theta\right)-\cos ^{2} \theta+\sin ^{2} \theta$
$=-\cos ^{2} \theta \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\sin ^{2} \theta$
$=-\sin ^{2} \theta+\sin ^{2} \theta=0$
[It is generally easier to work with a target of zero (ie rather than trying to rearrange the LHS into the RHS); especially if fractions are involved - as we need only show that the numerator is zero.]
(4) Correct use of ${ }^{\prime} \Rightarrow^{\prime}$

Example: Show that $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
Avoid the following:
$\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$\Rightarrow \frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow \cos ^{2} \theta\left(1-\tan ^{2} \theta\right)=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow-\cos ^{2} \theta \tan ^{2} \theta=-\sin ^{2} \theta$
$\Rightarrow-\sin ^{2} \theta=-\sin ^{2} \theta$
[This has only shown that the truth of $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$ implies the truth of $-\sin ^{2} \theta=-\sin ^{2} \theta$, whereas we need to prove the opposite. The situation can sometimes be redeemed by the use of $' \Leftrightarrow '$ (if and only if) in place of ${ }^{\prime} \Rightarrow^{\prime}$ (where this is valid of course), though the above layout is generally frowned on, as being inelegant. A compromise may be to show that the LHS and the RHS of (A) can both be shown to equal the same expression. Alternatively, each side could be rearranged, to produce a new equation, prior to another approach being adopted.]
(5) Factorise rather than expand

Example: To simplify $\frac{1}{2} n(n+1)+\frac{1}{6} n(n+1)(2 n+1)$
Write $\frac{1}{6} n(n+1)\{3+[2 n+1]\}=\frac{1}{3} n(n+1)(n+2)$
(6) Identities

Note the distinction between $\tan \theta=\frac{\sin \theta}{\cos \theta}$ (which is true for all values of θ) and $\tan \theta=\sin \theta$ (which is true only for certain values of θ). (Strictly speaking, we should write $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$, to indicate that it is an 'identity'.)

