Second Order Linear Differential Equations with Constant Coefficients (9 pages; 28/5/20)

(1) Example 1:
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = x^2$$
 (*)

where
$$y = 1$$
 and $\frac{dy}{dx} = 2$ when $x = 0$

It has been found that a function of the form $y = Ae^{\lambda x}$ will satisfy the **homogeneous** equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.

 $\left[\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = x^2$ is referred to as a **non-homogeneous** equation, and its solution will follow shortly.]

Substituting this function into (*) gives:

$$\lambda^2 A e^{\lambda x} - \lambda A e^{\lambda x} - 6 A e^{\lambda x} = 0,$$

which leads to the **auxiliary equation** $\lambda^2 - \lambda - 6 = 0$ or $(\lambda + 2)(\lambda - 3) = 0$, which has roots $\lambda = -2 \& 3$.

The general solution of $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$ is then

 $y = Ae^{-2x} + Be^{3x}$. (It can be verified that this satisfies (*), and it can be proved that it is the most general solution, by virtue of having two arbitrary constants.)

 $y = Ae^{-2x} + Be^{3x}$ is referred to as the **complementary function** of non-homogeneous equation.

(2) We now find a single solution of the non-homogeneous equation; say y = f(x) (with no arbitrary constants).

It can then be seen that $y = Ae^{-2x} + Be^{3x} + f(x)$ satisfies the non-homogeneous equation, and once again the presence of two arbitrary constants means that it is the general solution.

(3) The single solution is referred to as a **particular integral**. (Not to be confused with 'particular solution', which refers to a solution of a differential equation that satisfies specified initial or boundary conditions). Its form will depend on the right-hand side of the non-homogeneous equation, and a table of **trial functions** is given in Appendix 1.

For the present example, where the right-hand side is x^2 , the trial function is the quadratic function $y = ax^2 + bx + c$.

Substituting this into (*) gives

$$2a - (2ax + b) - 6(ax^2 + bx + c) = x^2$$

Equating the coefficients of powers of *x*:

 $x^2: -6a = 1; \ x: -2a - 6b = 0; \ \text{const. term: } 2a - b - 6c = 0$ leading to $a = -\frac{1}{6}, b = \frac{1}{18}, c = -\frac{7}{108}$

The general solution of the non-homogeneous equation is therefore

$$y = Ae^{-2x} + Be^{3x} - \frac{x^2}{6} + \frac{x}{18} - \frac{7}{108}$$

As $y = 1$ and $\frac{dy}{dx} = 2$ when $x = 0$,
 $1 = A + B - \frac{7}{108}$
and $2 = -2A + 3B + \frac{1}{18}$

fmng.uk

leading to $A = \frac{1}{4}$ and $B = \frac{22}{27}$

so that the particular solution is

 $y = \frac{1}{4}e^{-2x} + \frac{22}{27}e^{3x} - \frac{x^2}{6} + \frac{x}{18} - \frac{7}{108}$

(4) Example 2:
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos 2x$$
 (*)

The auxiliary equation is $\lambda^2 - 6\lambda + 9 = 0$ or $(\lambda - 3)^2 = 0$, which has a repeated root of $\lambda = 3$.

We need a general solution with two arbitrary constants (for a 2nd order differential equation), and it can be shown that a suitable complementary function in this case is $y = (A + Bx)e^{3x}$ (see Appendix 2).

The particular integral in this case has been found to be of the form y = asin2x + bcos2x.

Substituting into (*) gives

(-4asin2x - 4bcos2x) - 6(2acos2x - 2bsin2x)

+9(asin2x + bcos2x) = cos2x

Equating coefficients of *sin*2*x* and *cos*2*x*:

$$-4a + 12b + 9a = 0$$
 and $-4b - 12a + 9b = 1$

leading to
$$a = -\frac{12}{169}$$
 and $b = \frac{5}{169}$

The general solution is therefore

$$y = (A + Bx)e^{3x} - \frac{12\sin 2x}{169} + \frac{5\cos 2x}{169}$$

fmng.uk

(5) Example 3:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = e^{3x}$$
 (*)

The auxiliary equation is $\lambda^2 - 2\lambda + 5 = 0$, which has

roots $\lambda = 1 \pm 2i$

The complementary function is then $y = e^x (Ae^{2ix} + Be^{-2ix})$

$$= e^{x} \{A\cos 2x + iA\sin 2x + B\cos(-2x) + iB\sin(-2x)\}$$

$$= e^{x} \{ (A+B)\cos 2x + i(A-B)\sin 2x \}$$

$$= e^{x}(Ccos2x + Dsin2x)$$

[Note that *C* and *D* will be real if *B* is the complex conjugate of *A*. As only real values of *C* and *D* are acceptable, it follows that *A* and *B* are restricted to be complex conjugates.]

The particular integral in this case has been found to be of the form ae^{3x} .

Substituting into (*) gives $9ae^{3x} - 2(3ae^{3x}) + 5ae^{3x} = e^{3x}$,

so that 8a = 1 and $a = \frac{1}{8}$.

The general solution is therefore

$$y = e^x(C\cos 2x + D\sin 2x) + \frac{e^{3x}}{8}$$

Note: Functions such as Ccos2x + Dsin2x can also be written in the form $Esin(2x + \alpha)$, for example.

(6) Example 4:
$$\frac{d^2y}{dx^2} + 9y = sin3x$$
 (*)

The auxiliary equation is $\lambda^2 + 9 = 0$, which has roots $\lambda = \pm 3i$ The complementary function is then Asin3x + Bcos3x. ^{fmng.uk} A particular integral of the form asin3x + bcos3x won't work (as the left-hand side will equal 0). We therefore adopt a trial function of x(asin3x + bcos3x).

[For this reason, it is a good idea to find the complementary function before the particular integral.]

For this trial function,

$$\frac{dy}{dx} = (asin3x + bcos3x) + x(3acos3x - 3bsin3x)$$

and
$$\frac{d^2y}{dx^2} = 3acos3x - 3bsin3x + (3acos3x - 3bsin3x)$$

$$+x(-9asin3x - 9bcos3x)$$

$$= 6acos3x - 6bsin3x - 9x(asin3x + bcos3x)$$

Then, substituting into (*);
$$6acos3x - 6bsin3x - 9x(asin3x + bcos3x)$$

$$+9x(asin3x + bcos3x) = sin3x$$

so that $6acos3x - 6bsin3x = sin3x$

Equating coefficients of *sin*3*x* and *cos*3*x*:

$$a = 0 \text{ and } b = -\frac{1}{6}$$

The general solution is therefore

$$y = Asin3x + Bcos3x - \frac{1}{6}xcos3x$$

(7) Particular Integral: Investigation

Explore the appropriate forms of the particular integral for the differential eq'n $\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = de^{kx}$, where $b, c, d \neq 0$, when the auxiliary eq'n has real roots.

Solution

Consider the trial function $y = (A + Bx + Cx^2)e^{kx}$

Then
$$\frac{dy}{dx} = (B + 2Cx + kA + kBx + kCx^2)e^{kx}$$

and $\frac{d^2y}{dx^2} = (2C + kB + 2kCx + kB + 2kCx + k^2A + k^2Bx + k^2Cx^2)e^{kx}$,

so that
$$\{2C + kB + 2kCx + kB + 2kCx + k^2A + k^2Bx + k^2Cx^2 + b[B + 2Cx + kA + kBx + kCx^2] + c[A + Bx + Cx^2]\}e^{kx}$$

= de^{kx}

Equating coeffs of x^2 : $k^2C + bkC + cC = 0$

$$\Rightarrow C(k^2 + bk + c) = 0 \quad (1)$$

Equating coeffs of $x: 2kC + 2kC + k^2B + 2bC + bkB + cB = 0$ ie $B(k^2 + bk + c) + 2C(2k + b) = 0$ (2)

Equating constant terms:

$$2C + kB + kB + k^{2}A + b[B + kA] + cA = d$$

$$\Rightarrow A(k^{2} + bk + c) + B(2k + b) + 2C = d (3)$$

Case (i): *k* isn't a root of the aux. eq'n (so that $k^2 + bk + c \neq 0$) (1) $\Rightarrow C = 0$ Then (2) $\Rightarrow B = 0$ and (3) $\Rightarrow A = \frac{d}{A(k^2+bk+c)}$,

and so the particular integral is $y = \frac{d}{(k^2+bk+c)}e^{kx}$

Case (ii): *k* is a root of the aux. eq'n (so that $k^2 + bk + c = 0$) and the aux. eq'n has repeated roots, so that $k = -\frac{b}{2}$

 $(3) \Rightarrow C = \frac{d}{2}$

Also, the complementary function is of the form $y = (A + Bx)e^{kx}$, and this can be excluded from the particular integral (as it makes the LHS of the differential eq'n zero), whic is therefore

$$y = \frac{d}{2}x^2 e^{kx}$$

Case (iii): *k* is a root of the aux. eq'n (so that $k^2 + bk + c = 0$)

and the aux. eq'n doesn't have repeated roots, so that $k \neq -\frac{b}{2}$

$$(2) \Rightarrow C = 0$$

And (3) $\Rightarrow B(2k + b) = d$, so that $B = \frac{d}{2k+b}$

Also, the complementary function includes $y = Ae^{kx}$, and this can be excluded from the particular integral, which is therefore

 $y = \frac{dx}{2k+b} e^{kx}$

Summary

For $\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = de^{kx}$, where $b, c, d \neq 0$, when the auxiliary eq'n has real roots:

	CF	PI
k isn't a root of the	$y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$	d
aux. eq'n, which has		$y = \frac{1}{(k^2 + bk + c)}e^{-kt}$
distinct roots		
k isn't a root of the	$y = (A + Bx)e^{\lambda x}$	d
aux. eq'n, which has		$y = \frac{1}{(k^2 + bk + c)}e^{-kt}$
repeated roots		
k is one of 2 distinct	$y = Ae^{kx} + Be^{\lambda x}$	dx = dx
roots of the aux.		$y = \frac{1}{2k+b}e^{-kt}$
eq'n		
k is a repeated root	$y = (A + Bx)e^{kx}$	d d d d d d d d d d d d d d d d d d d
of the aux. eq'n		$y = \frac{1}{2}x^2e^{3x}$

Appendix 1: Trial functions for the particular integral

RHS of differential equation	Trial function	
$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	$b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$	
$(a_n \neq 0$, but a_i may be zero for	(if $a_i = 0$, we don't set $b_i = 0$)	
$i \neq n$)		
ae ^{px}	be^{px}	
$a_1 sinpx + a_2 cospx$ (where one of	$b_1 sinpx + b_2 cospx$	
the a_i may be zero)	(if $a_i = 0$, we don't set $b_i = 0$)	

Notes

(i) If the RHS is contained within the CF, include a factor of *x* in the trial function.

fmng.uk

(ii) If the CF is of the form $(A + Bx)e^{px}$, let the trial function be Cx^2e^{px} (see Investigation above).

(iii) For a combination of functions on the RHS, the trial function will be the corresponding combination of trial functions; eg for

 $x^{2} + cos3x - 2e^{2x}$ it would be $ax^{2} + bx + c + csin3x + dcos3x + fe^{2x}$ (and equating coefficients of $x^{2}, x, x^{0}, sin3x, cos3x \& e^{2x}$)

Appendix 2: Complementary function where the auxiliary equation has repeated roots

Suppose that the homogeneous differential equation is

$$\frac{d^2y}{dx^2} - 2k\frac{dy}{dx} + k^2y = 0$$
, so that the auxiliary equation is
$$\lambda^2 - 2k\lambda + k^2 = 0 \text{ or } (\lambda - k)^2 = 0$$

Then consider the complementary function $y = (A + Bx)e^{kx}$.

$$\frac{dy}{dx} = Be^{kx} + k(A + Bx)e^{kx} = (B + kA + kBx)e^{kx}$$

and
$$\frac{d^2y}{dx^2} = kBe^{kx} + k(B + kA + kBx)e^{kx}$$
 (differentiating the 1st expression for $\frac{dy}{dx}$)
= $(2kB + k^2A + k^2Bx)e^{kx}$

Then, substituting into the LHS of the differential equation gives

$$(2kB + k^{2}A + k^{2}Bx)e^{kx} - 2k(B + kA + kBx)e^{kx}$$

$$+k^{2}(A + Bx)e^{kx}$$

$$= e^{\lambda x} \{Bx(k^{2} - 2k^{2} + k^{2}) + A(k^{2} - 2k^{2} + k^{2}) + B(2k - 2k)\}$$

$$= 0$$
, as required.