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Section A: Pure Mathematics

There are many possible ways of answering this question, but it is essential to take a systematic
and methodical approach. Here is one such strategy.

Consider the first two digits: there are eight possible sums (from 1 + 0 =1to 4 + 4 = 8}.
If the first two digits sum to 1, there are two choices for the last two digits {1061 and 1010}.

If the first two digits sum to 2 (11 and 20), there are three choices for the last two digits
(because you can have 02 as well as 11 and 20).

If the first two digits sum to 3 (30, 21, 12}, there are four choices for the last two digits.
If the first two digits sum to 4 {four choices), there are five choices for the last two digits.

If the first two digits sum to 5 (only four choices: 14, 23, 32, 41), there are the same four
choices for the last two digits (there is no choice of 05 or 50}.

If the first two digits sum to 6 (only three choices), there are three choices for the last two
digits.

If the first two digits swn to 7 {only twe choices), there are two choices for the last two digits.
If the first two digits sum to 8 {only one choice), there is one choice for the last two digits.

Hence there are (1 x 2)+ (2 x )+ {3 x4+ A4 x5+ U x D+ B3 x H+{2x2)+{I x 1) =170
four-digit balanced numbers.

k 2k
In general, there are Z r(r+1)+ Z (2k +1 — r)? possible four-digit balanced numbers.
r=1 k41

The second sum simplifies because (2k +1 —[k+1))% = k2, (2k+1—[k+2])* = (k ~ 1)?
and so on until (2k + 1 — [2k])* = 1)

k k
[ence there are rir+1)+ Z * possible four-digit balanced numbers.
r=1 r=1

k k
22r2+2r
r=1 r=1
k
TQ

2k (k c (ke + 1
k (k+ 1(1 (2k + 1) T+ k{ 2+ ) using the given identity for )
re=1

H

il

k{k+ 1) {4k +5)
6

B 4k +243
:k(k+1)( - )



()

(ii)

tan A +tan B Lo
tan (A + B) = = . 2
an(4+B) l—tanAtanB i -

b

=1

X

1
2 3

= A+ B= %, since A and B are both acute,

: . 1 1 7
Now, if arctan — + arctan — = —
p g 4

11
= + £
= ; £ T — =1, by using the same identity for tan (A + B)
K
g+p —_ . .
= 7= 1, multiplying numerator and denominator by pg
e

=pg—p—q—1=0
= (p~1) (g — 1) = 2 (notice that this is analogous to “completing the square”).

Since p and ¢ are positive integers, we require two positive integers whose product is 2:
the only choices are 1 and 2.

Hence p = 2 and g = 3 (or vice-versa: don’t forget this second solution).

. 1 8 T
If arctan ~ + arctan =
T s+t 4

1 s 1 §
= - + i 1 - <F X " t)’ by rearranging the expansion of tan (A + B) =1

=8+ t+rs=r(s+1{) — s, multiplying numerator and denominator by r (s + ¢)
=g+ t=rf—3s
=28 = t(r—1)
2s

i
7 +
Since r is an integer, ¢ must be a factor of 2s. But the highest common factor of s and
tis 1, so t cannot be a factor of s. Hence £ = 1 or { = 2 (in the latter case, s is odd).
Therefore either r =2s + lorr =5+ L.

=p=

So, for all positive integer values of s,

8
arctan + arctan =X
s+ s+1 4
and for all positive odd integer values of s,
arctan + arcta i i
¥ : Ictan —
s+1 s+2 4

You might now like to consider whether the equation

1 1 1 T
arctan — -+ arctan — -+ arctan — = —
2 g T 4

has any integer solutions; first, you'll need an identity for tan (A + B + C).



There are many ways of tackling this question; here is one:
cos* @ - sin' 6 = (cos® § + sin” #) (cos® 0 — sin® @) = cos 20

cos® 6 + sint 0 = ((:082 6 + sin? 9)2 —2sin®fcosth = 1 — % sin? 26.

= (],

Hence /2 cos® 0~ sint § 48 = / ’ cas 28 df = Fm 29}3
0 JO

LI .4 3 L A 1
Also cos” 6 -+ sin” 8 df = 1- 5 sin 20 df = 1— 1 (1 —cosdf) df
o 0 0

"33 cosdf 36 sind61:  3xm
/G it da_[?f* 16 }e

2 til
2

Hence / cost 6 df = /2 sin'f dé = §E
Jo Jo 16

Adapting this idea:

cost @ —sin® 0 = (c052 f — sin® 9)3 + 3 cos® Hsin b (6082 6 — sin® 9) = cos® 26 + %sing 26 cos 28

cosb 0 +sin® 0 = (C032 8 + sin® 8)3 ~3cos® Gsin b (6082 6 + sin® 9) =] - g sin® 20

S L

2cosﬁ!;?'wSinﬁe?d@:/2
0

n

Hence /
0

s

= / : (1 ~ sin’ 29) cos 20 % sin® 26 cos 26 46 = /
4} ]

cos® 260 + ?lm sin® 20 cos 20 d9

[SIE]

cos 20 — % sin” 26 cos 20 d¢

2 24

_ [sinZQ sin® 29}% —0
. .

[SIE]

LB . 6 i 3 0 3
Also cos’ 0 +sin” 0 df = 1—55111 20 df = 1w§(1mcos49) de
0 0 G

~ /s 5, 3cosdd {59 . SSin49}% b
8 8 L8 32 lo 16
3 6 T p B
Heunce cos” 0 df = sin”# dff = —
0 9 32

™

2
You might like consider how you would prove that / cos?® §—sin®* 6 @6 = 0 for all k, without

0
having to derive a new identity for each value of .



The beginning of this question is made much easier if you are able to factorise by inspection
i.e. by looking at a product and filling in the missing terms by deduction rather than using a
formal method such as long division.

For example, to factorise x° + 2z + 12 you should first see that z = —~2 is a root of the
expression (because —8 — 4 + 12 = 0) hence x + 2 is a factor (using the factor theorem), then
think along the lines: 23+ 2z + 12 = (z + 2) x (a quadratic expression), and the coefficient of
23 is 1 so the coefficient of 22 must be 1; but that will create a term 222 which you don’t want
so there needs to be a —2r term in the quadratic (which will generate a —2z% term when the
brackets are expanded); but then there will be a —4z term and you want 2z overall so you
need a final term of 6 to create an additional 6z; and 2 x 6 = 12 so the constant term will be
correct. This takes time to write out, but is very quick to do in your head.

Factorising complex algebraic expressions by inspection is much easier than any other method:
you should work carefully through the reasoning that tells you that

o —3abe+ b+ = (w4 b+ (a7 + 07+ — ab— we—be).

Hence 2Q (x) = 227 + 2% + 202 — 2zb — 2wc — 2bc = (7 — b 4+ (z— ) + (b—¢)*.
When we are told that & is a root of both eguations, we can deduce that
ak® + bk +¢=0

and also that
bk + ck +a = 0,

There are now a number of possible steps: an obvious one might be to use the quadratic formula
to try to find an expression for k in terms of a, b and ¢. But notice that the expression we are
asked to derive is still in terms of k, so any step which eliminates k is unlikely to be correct.

Instead, multiplying the first equation by b, the second by a and subtracting yields
(acm bz) k= be— a®.

Multiplying the first equation by ¢, the second by b and subtracting yields
(ac - bg‘) E? = ab— 2.

N (bc—avfz)gm ab ~ ¢?
ac — b? ac — b?
= (ac - b2) (ab - (22) = (bc»w a2)2
= a2be — ab® — ac® + b2 = bPe? + o — 2a”be
=0% —3abc + 5 + % =0

= (a+b+c) (a2 + b 4 ? —ab—ac — bc) = (), using the factorisation from the beginning of
the question.



Hence either a? + b + ¢? — ab — ac — be = 0

2

= {a—b02 +(a—c)? +(b-c)> =0

= a = b = ¢ (you should consider what can be deduced if a sum of squares is zero)

hence the equations are identical {and each reduces to z” +z +1 = )

ora+b+c=10

=k ],

You might like to consider what would happen if ac = &,

To tackle this question, a big, clear diagram is essentiall

(i)

(ii)

Let the side length of the octahedron be 2k,

Then the sloping “height” of a triangular face is kv/3.

Also, the vertical height of the whole octahedron is 2k+/2.

Therefore, by the cosine rule, 8&% = 3k% + 3k% — 2 x kv/3 % kv/3 % cos A.

2%2 1
Hence 4 = arccos (—EE) = AT CCOS (~§)

The centre of each face is on any median of the equilateral triangle that is the face, and
the centre is two-thirds of the way along the median from any vertex.

This is a guotable fact, but can be worked out from a diagram, using the fact that the
centre of an equilateral triangle is equidistant from the three vertices: the centre divides
the median in the ratio 1: cos60°.

The feet of the two medians from the apex of the octahedron in two adjacent triangles
are kv/2 apart.

Therefore, by similarity, adjacent centres of the triangular faces are % % k+/2 apart.

Therefore, the volume of the cube (whose vertices are the centres of the faces) is

3 qgn3
(%xkﬁ) =l6k\/§

27
and the volume of the octahedrom is

4% % k2 8KEV2

2
T3 3

Hence the ratio of the volume of the octahedron to the volume of the cube is 9 ¢ 2



@)

(ii)

Since 2?2 ~ y? = (z ~ y) (z + y), the given equation reduces to d (z +y) = d.
Hence z -y = d?, and also we are given that x —y = d.
Therefore z = -;— (d2 + d) and gy = % (d2 - d).

For the second equation, let z = /m and y = /i and let d = 6 {any choice of d > 6
will work).

Then z = 21 and y = 15, so m =441 and n = 225,
You might like to check: 441 — 225 == 216 = (21 — 15)3.

It helps here to know that 73— y3 =(zx—1vy) (1’2 -+ zy + yg).
Therefore the equation 7° — ¢ = (z — y)* reduces to 2% -+ zy + y* = d5.
We know that x? — 2zy + y? = d since » — y = d.
Hence, subtracting these two, 3zy = d° — d°.
This result can also be deduced by simplifying «* — {(z — d)3 =d* (using z — y = d).
Sinced =z —y
=3z (x —d) = d* — d°
= 37% — 3dr — (d° — d*) =0
C3d+ /942 +12(dP —d?)  3d+dVI12d-3
6 6

4d -1
=20 = d+d 5

=z

For x to be integer we need to be a perfect square.

If d = 1 then either x = 0 (not permitted) or © = 1 which implies y = 0 (not permitted).
So let d = 7 {for example), since 4 x 7T~ 1 = 27 = 3 x 3% (d = 17 also works).

=2z =T+ 7V0

Therefore & = 14 and hence y = z — d = 7 (choosing the positive values).

You might like to check: 143 - 2 = 2x 7)} =P =7x P =7 = (14 - 7}".



When answering this question, it is useful to remember that the distance D hetween points
with position vectors p and q is evaluated as D = |p — g].

b1 41
Hence if p= [ p | and q= [ g | then D = \/(p1 ~ @) + (52 — 02)> + (ps — s’
73 g3

If you tackle a guestion such as this using a known formula (there is one for the minimum
distance between two skew lines, using the vector product), you need to be careful with the
subsequent algebra: if you cancel k from the numerator and denominator of a fraction, you
are excluding the possibility that k& might equal 0.

(i) D?=(3—22+0) +(=2-20+20)% + (T + 31 — 2u)°
= 1707 + 9p® — 240 — 30p + 38\ + 62
=(3p—d4r =5+ (A —1)" +36.
The minimum value of D? is therefore 6, achieved by setting A = 1 and p = 3.

When A = 1 and g = 3 the points {3,2,—1) and {7,4,3) are the minimal distance
apart.

(ii) The strategy in part (ii) must be to adapt the strategy in part (i):
D? = (1+4kB)? + (—a+ § — BE) + (=7 — 38k)°
= 1+ 1653%%% 4 8kf + o + 52 + F2k% — 208 + 2afk — 282k + 49 + 942k2 + 425k
= 50 + 26/3°k% + 508k + o + 5% — 208 + 208k — 253%k
= (o — f + Bk)* + (B8k + 5)% + 25.
This is a useful simplification because the second bracket is only in terms of 5 and k.
Hence if k # O then the minimum distance between the two lines is 5 (when § = —
and = 1— ).

But if & = 0 then the minimum distance is /50 (when a = 8}, and the lines are parallel:
look at the two direction vectors.

You might like to consider what happens geometrically to the two lines as k tends to zero:
notice that there is a “jump” from a minimum separation of 5 to a minimum separation of
a0.



Consider f (2) = az® ~ 6az® + (12a¢ + 12) 2 — (8a + 16).

Since f(2) = 8 and ' (2) = 12, the curve y = f (z) touches y = 2% at (2,8): notice that both
calculations are necessary to prove that the curves touch.

To find the other intersection point, let f (z) = 2
= {a— 1) 2* — 6az® + (12¢ + 12) 2 — (8a + 16) = 0
Substituting z = 2: 8(a — 1} — 240 + 2 (120 + 12} — (8a + 16) = 0

= [z —2) [(a ~1)7? — (da+2)z + (da + 8)} = ( (notice that factorising by inspection is

much easier than using a method such as long division}

Substituting = = 2 into the quadratic factor: 4{a — 1} — 2{4a + 2) + (4o + 8) = (.

= (x-2){z—2) {(a,Al)mw(Za~E~4)] ={

: . : , 2a+4 [2a+4]
So the other intersection point has coordinates ( T [ i } )
a — a -

% —+ 4
aTE_g

i) Wheno=2
(i) en =2 —

Hence the two graphs touch at {2, 8} and intersect at (8,512).
y = 223 —122%+ 36232 has no turning points: consider the derivative 622 —242+36 = 0.

2a + 4

is undefined.

(ii) When a =1,

Hence the two graphs touch at (2,8), and do not intersect elsewhere.

y = z° —62° + 242 — 24 has no turning points: consider the derivative 3z%— 122424 = 0.

%a + 4
(i) When o = —2, = +1 =0,

Hence the two graphs touch at {2,8) and intersect at {0,0).

y = —32z% + 1222 — 12z turns when = = 2 + /2 = 3.4 and 0.6: consider the derivative
—63% + 241 — 12 = 0.

It is essential that each sketch shows these features clearly, though the graphs need not be to
scale.



Section B: Mechanics

A big, clear diagram is very helpful here - for you and also for the examiner!

Resolving parallel and perpendicular to the plane in both cases:

Xcosf+ pR = Wsind R = Xsint 4+ W cos 0

and

kX cosf = pR 4+ Wsiné R=kEXsing +Wcos 8.
cosf + fisinf ginf — picos#

7 Tcosf - kpising h peosé -+ sinfd

= §in# cos O+ cos? G-+ sin® 0-+1% sin 6 cos § = kcos 8 sinf—ky sin® 6 —ku cos® 6-+ku? sinf cos §
= (k=1 {1+ p?)sinfcosd = p(k+ 1)

Since sin @ cos @ = %Sin28 < %

wik+1) <1

(k-1 {1+p2) =2

=¢k(l+u2)w2uk21+u2+2y

=k (1= 2u+p?) 214 2u +

Of course, the same result can be derived by initially resolving horizontally and vertically. In
this case, the four equations are

X + ppRcosf = Rsind W = Rcost 4+ uRsing
and
kX = pReost + Rsind W = Reosd — pRsinf.

From these, — = ————— it

X sinfl — pcos® 1 (pcos -+ sing
%4 cosf 4+ psing  k

e L yrhich 18 equivalent to the above
cos ) — psinf
argument.



The displacement-time graph should have straight lines with equations:

s = d — ut which is the path of the Norman army;

s == xt which is the path of the Saxonr horseman riding towards the Norman army;

§ = d — yt which is the path of the Norman horseman riding towards the Saxon army.

The Saxon horseman meets the Norman army when @t = d - uf,

. . . . o dx
Le. at the point with coordinates , .
(T TS

2elx
(I S

-

Therefore his return path has eguation s — = -z |i-
U+ U+ T

>r~“>s:——:izt—i—

. d
The Norman horseman meets the Saxon army when s =0 i.e. when £ =2 —,
Y

Therefore his return path has equation s = yt — d

The subsequent analysis assumes that the two horsemen meet for the first time as they ap-
proach the opposing army, and meet for the second time as they retreat from $he opposing

d ;
army. If so, the horsemen first meet when o = d — gyt =t =~ = 5 = Y since s = at.
r+y Ty
2dx
They next meet when —azt + =yt —d
W
2dz d{u -+ 3x)
dd=t(rty)=tm ——
u b (z+y) (z+y) (u+ )

dx (v + 3z) 2dr  dw(2y — 2 —u)

=g = - = .
; (z+y{ut+z)  w+z {(ut+z){z+y)

Of course, this need not happen:

(i)  Tf the Norman horseman rides quickly, he will meet the Saxon horseman for the second

r

time (When =yl —d=1= ~——) before the Saxon has reached the Norman army
y—x

<
A A TR i

for the first time. If so, Dut+z<y—s=u<y—2

(ii) If the Saxon horseman rides quickly, he will meet the Norman horseman for the sec-

9 d T — 1y .
ond time (when -zt A+ 0o d—yt=>t= —~———(E——?i)—— before the Norman has
U+ (u+z) (@ -y
reached the Saxon army for the first time.

d{z —u) d , o
(u+2) (2 — y) <a“¢’y($“€ﬂ)<(u+:€)(£ y)

If se,

= 2oy < ur +2i=2y — 1z < u
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Again, a big, clear diagram is very helpful here.

L -
The acceleration up the slope is mgw, hence the velocity at height ) is \/u? — gL

Then the particle travels freely as a projectile until it hits the floor, with a displacement of D

horizontally and -3 vertically.

L ‘ .
Hence -5 = (‘\/u2 - gL) tsin30° — %tz and D = (\/ug - gL) tcos 30°
= — L=ty/u?—gL—gt? and 2D =tV3/u? — gL

2D 4gD?
= L= o — o
V3 3(ut —gL)
= dgD? — 2DV3 (u? — gL) — 3L {u* — gL) =0
dp  _dD
=8¢D—r - 2@?\/5 (u? — gL) +2Dgv3 -3 (u® — gL} +3Lg =0

dD  2v/3gD - 3{u® — 2gL)
AL~ 8gD -~ 23 (u? ~ gL}’
Lv3 dR _dD V3
2

SlnceR:DJrTiafz 7

Honee W g 3D _ V3

| Tt T Ty
B 2/3gD — 3(u® — 2gL) _ mm\/—m%
8gD — 24/3 (u? — gL) 2

= ~dgDV3 + 3 (v - gL) +2Dgv3 — 3 (u* —29L) =0

= 3Lg = 2Dg/3

=20 = [V/3

=R =2D= L3

Substituting this into 49D* — 2DV3 (u2 - gL) — 3L (u?' - gL} = () we deduce that:
3gL% — 3L (u2 - gL) ~ 3L (u2 - gL) =0

= gL = 2u? — 2gL

= 3gL = 2u®

@Rmf% (zL\/g)
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Section C: Probability and Statistics

A tree diagram is very helpful when answering each part of this question.

| &

(i) In the first case, P(the first sweet is red)}= -

=

a{a—1) (N —aja

alN —a

and P(the second sweet is red) =

pa  qb
(ii) In the second case, P(the first sweet i3 red)= Ej\—? + —?\7

and P(the second sweet is red)

TN(N-1) N(N-1) NN -1

Cpaxpla~1) paxqgb+l)  ghxpla+1) gbxqg(b-1}

N (N —1) N(N+1) = N{N+1) N(N =1)
+p(N-—a)><pa p(N —a)xgh q(N—-bxpa q(N-—Db) xgh
NN -1) N{N+1) NN T NN =1

TP D e p W - 0]+ g e - D gV - b)]

+m£%7[a(f)+l)+b(a+l)+b(N—~a)+a(wa)}

pa qb
:AT(N—E)[Np~p}+N(N~1){Nq_q]

+RT—(7?\:;—Q—+—1—){NCL+N5+CL+5}

_pla ¢ pafatd)
-~ N N N

_ p+4)ipa+gb)
N

a gb
L

a

N



i3

There are two ways of writing the answer to each part: one way is to think of a tree diagram,
and then to combine the appropriate fractions; the other way is to count the number of “suc-
cessful” combinations and divide by the number of “possible” combinations. Of course, these
two approaches give the same numerical answer! You should make sure that you understand
each version of the solution.

The probability that

(i)  all four discs taken are numbered
5 4 3 2 ¢ 1

= X X = X = = s =
1110 9 8 MGy 66
(i1) all four discs taken are numbered given that the dise numbered “3” is taken first

Ao 4 32 4
T X175 X5 X% Cs 1

RS TTA ﬂgﬁ

= i
i1
(iii) exactly two mumbered discs are taken, given that the disc numbered “3” is taken first

14 6B ser o 6
I Bl T Al AN TV Cix%Cy 1
¢, 5

=

i

P

because there are three equally likely outcomes once “3” has been taken first: “num-
hered, blank, another blank” or “blank, numbered, another blank” or “blank, another
blank, numbered”.

(iv) exactly two numbered discs are taken, given that the disc numbered “3” is taken

1 4 i) 5 1 4 6
. ﬁXﬁXng % 12 = C]x le Cgm}—
Ty T Bl Yo TR

because there are twelve equally likely rearrangements of “3, another number, blank,
another blank”. Notice how P {disc numbered “3” taken) has been calculated on the
denominator.

(v) exactly two numbered discs are taken, given that a numbered disc is taken first

B 4 6B ST 8
ZHXIOXQXSng Cy x C'1><C’2:m1m
2 DOIXIOCS 2

[y
-

because there are three equally likely ontcomes once a numbered disc has been taken
first.

(vi) exactly two numbered discs are taken, given that a numbered disc is taken

%X%X%X‘% X6~502X602W10
- ANV SRR | Tl S6C, T 91
1W11X10X9X8 o 'y 21

because there are six equally likely rearrangements of “number, another number, blank,
another blank”. Notice how P (a numbered disc is taken) has been calculated on the
denominator.
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dy

y=(z+lje "= —==—(z+1)e +te ¥ = —~ze"

dx

Hence the graph turns (and crosses the y-axis} at {0,1), and it crosses the z-axis at (~1,0).
As z tends to oo, y tends to 0 from above; as x tends to —oo, y also tends to —oc.

(i)

(ii)

(iii)

P(X22=1-p

=P(X=0)+P(X=1)=p

= (1+ Ae ™ = p,

By considering the graphs y = (z -+ 1)e™ and y = p, we can see that this equation has
a unique solution (for 0 < p < 1).

P X=1)=g¢q

= e =q.

The structure of part (i) suggests we consider the graphs y = z¢™ and y = q.

. d
y=uze "= S et et = (I—z)e”
dx

Hence the graph of i = ze™ passes through (0, 0) and turns at (1,e74).

T

As 2 tends to oo, y tends to 0 from above; as z tends to —oo, i also tends to —oc.

Hence the equation Ae™* = ¢ will have a unique solution when ) = 1 and g=e "

P(X=1]X<2) =r

he A
wooy =T

et 4+ Aemt + gre?
_ 2\ _

2420+ A2

2z
The structure of parts (i) and (ii} suggests we consider the graphs y = e and
24 2 4+ 22

Yy o
Tt h 2 asses through (0, 0)

e graph y = ——————= pa - , 0.

gral SRR &

It turns Whe112(2+2m+:62) ~2r(2422) =0=4~22> =0 =z =22

As z tends to oo, y tends to 0 from above; as x tends to —oc, y tends to 0 from below.

2\
SISl r will have a unique solution when A = /2 and

2
o= H\/i = \/§ x\/§—1
242242 2442

Hence the equation =
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Section A: Pure Mathematics

01

Q2

It is important to get off to a good start in any examination, especially so in STEPs, and Q1 is
specifically designed to get as many candidates as possible off to such a start, Binomial series
expansions are given in any of the permitted formulae books, and there is really no excuse for
failing to pick up the marks on the introductory bit of the question. It is almost certainly to your
advantage to simplify the terms of the expansion, but a little bit of care is in order here, else you
are automatically losing accuracy marks later on in (a) and (b).

For part (a), you are told exactly what value of & to choose, and it is simply a case of using it on

both sides of the statement ~ in the LHS to show that you can extract a sensible multiple of NEW
and then in the RHS to see what you get as a decimal. Remember that working in powers of 10
makes the numerical working a lot simpler.

In (b), you have to choose a suitable value of & so that the LHS gives a multiple of V6 . There is a
small (but negative) integer value of & which will do this nicely. Many candidates, however,
actually chose to work with &= 50 and, if you check, you will see that this seems to work equally
well. However, the approximation gained is not nearly so accurate; this is because ..... 7 Also, not
a few candidates chose values of k greater than 100 in absolute value, and these are even worse,
because ..... 7

In (i1), it is certainly possible to work back from the final answer in order to figure out what value
of & to use here, but (again) you are looking for some (presumably) integer value that will this

time yield a perfect cube multiple of 3 when 1+ is written as an improper fraction,

For interest’s sake, the original version of the question used the first three terms of the series
expansion with k=24 to find an approximation to 2.

K’ K’

Answers: (i) 1+ o +
200 80000 16000000

; () 1.732 05, (b)2.449 49,

It is fairly obvious that x =p and x =g are the two roots of the equation L. 0, which means
that the derivative is a multiple of (x — p)(x — ¢). Comparing the two then immediately gives » and
¢ in terms of p and q. The sketch is a standard (positive) cubic, through the origin, with its two
TPs in the first quadrant. Unintentionally, there are two possible candidates for the region R, since
the setters omitted to consider the one of them. Almost all candidates taking this paper identified
the intended region, and this was because the question tries to get you to focus on the area around
the point of inflection, which you are asked to mark on the diagram.

In (iti), m and » are simply the y-coordinates of the points corresponding to x = p and ¢
(respectively), and by this point you should know the curve’s equation (in terms of p and ¢ rather
than & and c). Notice that y(m) involves the extra gs and y(#) involves extra ps, so the difference
may just involve lots of (g — p)s, and the answer effectively tells you this much also. It may help
in the working, both now and later, if you exploit this difference as much as possible.

Before embarking on the final part of the question, it would benefit you greatly to take a
momentary pause and think about how the various bits of the question hang together. You were
earlier asked to describe the symmetry of the cubic, and this was not just an idle bit of space-filler
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on the setter’s part. Rather, it was an attempt to force you into recognising that the area of the
region R can be found by means other than integration. Ignoring the coordinate axes on the
diagram, and looking at the lines x =p, x =¢, y = n and y = m , you will see a nice rectangle
appearing in the middle of the page. Because of the symmetry of the cubic, R is something to do
with this rectangle, and this fact pretty much allows you to write the answer straight down, using
the answer to (iii}. On the other hand, if you want to do it by integration (as most candidates did)

And if you feel up to an algebraic challenge, see if you can work out, by integration, the area of
the other possible region R — which also turns out — rather surprisingly, I felt — to be a rational
multiple of (g — p)*.

Answers: (1) b= 3(p + q), c = 6pq; (ii) (two-fold) rotational symmetry about the P of I,

The first part of this question is a standard piece of bookwork, and requires only a modest ability
to cope with substitution integration and a bit of trig. identity work. In (i} (a), you need to spot a
suitable substitution for yourself — comparing the integrand with that in the introductory bit gives
the game away, if you're stuck. In my day, the 7= tan ‘ax substitution was a very common bit of
work, but you don’t see it very often at A-level nowadays, so you could be forgiven for not being
entirely familiar with it. Nonetheless, the principles of substitution still apply, and there may be
the odd trig. identity to be employed, of course. The final two pieces of work here are greatly
cased by the fact that they can be done in either direction. By that, I mean that one can eliminate
all the s in favour of xs, or vice versa. If you successfully complete part (i) (b), then (ii) is so
much easier, since the only difference is that you must have 3 sin’x in the denominator to give
147 instead of 6. Another simple substitution then changes the form into a standard arctan
integral and, with a little bit of care, the whole thing can be wrapped up quite smoothly.

Overall, I would suggest that this is a fairly routine question, with no great leaps of thought
required for a good A-level candidate to be able to work their way through it. What is required,
however, is a high level of thoroughness and familiarity with the basic techniques of the trig. and
calculus involved therein. Such capabilities are an essential requirement if you are preparing for
future STEPs.

Answers: (i) (a) i;-; (if)

T
6v3

This was actually not a particularly popular, or well done, question, although T still maintain that it
is quite an easy one when it comes down to it! To begin with, it is really, really obvious that you
need to expand the given trig. expressions using the Addition Formulae. Then, in order to obtain
tans throughout, rather than sines and cosines, you are going to have to divide by ..... (hint: note
the introductory conditions at the very start of the question, which are given to enable you not to
worry about dividing by ..... }. Wangling it into the given form and checking that the given
condition holds is not much more than an algebraic exercise at this stage, and shouldn’t prove too
much of a burden. However, it is easy to overlook the fact that you are asked to prove an “if and
only if” statement, which is two-directional. In point of fact, it is the case here that a clear line of
reasoning from first equation to final one actually is entirely reversible, although it is best to (at
least) point out that this is so, rather than ignore it.

For the next three parts, see how this result can now be used to solve each of the given equations,
once the “4” and the “B” have been clearly identified. Also, don’t forget to identify the o, B and vy
(the same in each of the three parts) and verify that o = ﬁz + yl . It is, of course, perfectly
possible to start each bit from scratch, and the wording of the question doesn’t actually prevent
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you from doing so, but it would seem a bit of a waste of time and effort to do so. Having said that,
several candidates successfully did (iii} by collecting the two (3x) terms up together and collecting
them up inan R sin(3x + 8) form.

Incidentally, my favourite part of the question was (ii), in which I got to play a bit of a dirty trick

— the statement looks like an equation, but is actually an ..... because .....
2n Sm .. t 3 Sn Tn T 4n
Ans P (i) =, —; (allx e [0, 2n); (i) —, —, =, —and —, —.
nswers: (1) 33 () all x e [0, 2m); (iii) Rt 30 3

Part (1) 1s a standard opener using compositions of functions, and the algebra shouldn’t prove too
demanding if you're careful. Again, simplified answers at each stage are most helpful for
successful further progress through a question like this. The sequence of powers of f turns out to
be periodic with period 3, and so £°”7 isn’t quite the big ask that it might seem to be at first sight.

As you’re told what to do in (if), it is just a case of being careful in establishing the relationship. A
grasp of the process of mathematical induction is an essential requirement for STEP II, even if it is
no longer on single Maths syllabuses elsewhere, and this could be used in this case. An informal
inductive proof was perfectly acceptable also, although it was equally acceptable to establish the
cases for n = 1, 2 and 3 and then point out that the periodicity of the tan function guarantees the
rest.

Now, part (iii) offers something a little more demanding. The simple approach involves spotting

that the use of 7=sin 6 gives v1—7* = cos #, and then a similar inductive argument to (ii)’s
will lead to an admittedly unappealing but otherwise simple result for ¢” in a sin{4 + B) kind of

way. However, if instead you note that v1—¢> denotes the positive square-root of 1 — 12, which
Y Y 1Y q

may actually be — cos & for some values of @ (and hence ). Thus, in fact, g2 can tarn out to be
just x again, so that the sequence {g, ¢, g’, ...} turms out to be oscillating (i.e. periodic with
period 2). If you proceed further down this route, exploring which parts of g’s domain give what
“powers” of g, you get very interesting results which may be worth discussion, but were not
expected under examination conditions here.

Answers: (i) £(x) = if%/%i
-+ X

(iif) Answer 1: g"(r) = sin(sin ™' ¢ +22) ; Answer 2: g"(r) = {

£y =x; %) = x.

e(t) nodd
t  neven

Once again, this starts off with a bit of very basic work that a realistic STEP candidate needs to be
in a position to rattle off quickly and efficiently. The “Hence” at the start of line 2 of the question
tells you that the answer to this integral is to be found in the two previous answers, without further
calculus work being done. It is, therefore, very bad examination practice to ignore the “Hence”
demand and go off on an “or otherwise” route that isn’t actually needed. And there’s a strong
chance you may not get any marks at all for your alternative approach.

In (ii), there is no reason why you can’t treat the given differential equation as a quadratic in a-ii

and solve it to get two slightly different, and much simpler, differential equations than the original

one. At this stage, if you have your wits about you, and you are NOT getting a 3+ x°
anywhere in sight, then you really ought to be a bit suspicious about why not! For the rest of it, it
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is a simple case of integrating using (i)’s result, and then applying the given initial condition to
find the constants of integration in each of the two cases.

p
Answers: (i) 1 : et o3t b éIan(x+x/3+:>c2) + O).
\/3+x2 V3+xt 2 2

(i) y = }6-x\f3+x2 + %ln(x+\/3+x2)— éxz I ;

6 2

Y= - —é—x\f3+x2 - —lzéin(x+\#3+x2)— }6-x2 + }5 + %ln3.

I like this question, although I accept that lots of candidates were probably put off by a question
that looks like something they’ve never seen before. However, it is often the case that questions of
the “new and weird-looking kind” can actually turn out to be relatively easy IF you’re prepared to
be a bit adventurous.

The opening bit introduces you to a (possibly) new idea, and then gets you to practise this idea in
a couple of cases in order that you get the hang of it. Then, in part (i), you actually get to use one
of these ideas, and you're pretty much told exactly what to do, and which of the two initial
functions to use to get the given result.

Next, in (i1), you're thrown in the deep-end rather more and left to decide what to do for yourself.
Here, however, there is reference made to a mysterious “suitable function” to be used. Now, if you
believe that the setter is out to trap you, trick you, and grind you into the ground then you
probably think you’re all on your own at this stage and have to find your own function. But you’re
wrong! The setters are actually trying to give you every opportunity to do some good
mathematics, and every effort 1s made to point you in the right direction if is felt at all suitable to
do so. In this case, you were initially asked to show that the sin and In functions had the
property being referred to. Then you used the sin function in (i). Perhaps, just perhaps, you are
meant to be using the other one in (if). If you can use the In function to establish this next result
(called the Arithmetic Mean ~ Geomeiric Mean Inequality), then parts (a) and (b) at the end
simply use it twice; once with very little thought required, and one with a little more thought
needed. Be brave! Give it a go.

Answers: (i1) — 2.

If you don’t know what is wanted in (i), then you really shouldn’t be doing this question. It also
really helps if you realise that if s and ¢ are positive, then X is the point between B and C such that
BX : XC =t : s . Once you have these ideas in place, this question involves nothing more than
finding the points of intersection referred to, by equating two different line equations at a time.
You will need to introduce a new pair of parameters each time, but if you keep each stage of
working separate, then there is no reason not to use the same two symbols each time; and then
solve pairs of simultaneous equations, gained by equating the b- and e~components of the two
relevant line vector equations, for these two parameters in terms of § and y. The result displayed is
known as Ceva’s Theorem.

Answers: (1) The straight line through B and C.



Section B: Mechanics

Q9

Q10

Q11

The greatest problem with marking mechanics questions on the STEPs is that candidates seem to
be so unwilling, or unable, to mark up a decently labelled diagram with all relevant forces on
them, or, in this case, relevant velocities and angles. On the face of it, this is just a collisions
question dressed up a bit, and there really are only the two mechanical principles to be applied
here: Conservation of Linear Momentum (CLM) and Newton’s Experimenial Law of Restitution
(NEL or NLR}. If you take a side-on view of the cone, then the collision ~ at the moment of
impact — is effectively the same as would be given by a plan view of a particle striking a vertical
wall: directly, in the first instance, and then obliquely in the second. Applying CLM parallel to
this line of impact (which is very easy in the first case and, in fact, the reason why you were asked
for an explanation to begin with so that you were pointed in the right direction) and NEL
perpendicular to it are essential steps in both parts of the question. In order to prevent you
worrying about how the cone might bounce off the plane, you are told that this does not happen.
So there is no point considering CLM vertically for the particle-cone collision, but there is still the
horizontal motion of the cone to consider.

In (ii), the collision is oblique to the line of the cone’s side, so there are two angles involved, and a
bit of trig. work might be needed to sort things out. Alternatively, rather than re-doing (i)’s
working in this separate case, one could simply consider the components of the “incoming”
velocity, and the second answer for w is exactly the same as the first, but with u replaced by .....
For the very final part of the question, a little calculus is in order.

The first thing to do here is to find the position of the centre of mass of the composite figure, and
this is fairly easily done by taking moments about some suitable point. Most candidates who
actually attempted this question then went very badly astray, largely due to lack of a discemnible
approach in their jottings. In slipping-tilting situations, the standard approach is to examine
separately what happens at the instant when slipping cccurs assuming that tilting hasn’t, and then
to examine what happens when tilting occurs assuming that the slipping hasn’t. This then gives
two sets of conditions on £ which can be compared. Remember that P can be in either direction,
hence the modulus sign in the answer, which needs to be explained somewhere along the line.

In a similar sort of way to Q9, this is just a reasonably standard projectiles question dressed up a
bit, and the vector set-up should help you work in the third-dimension quite naturally. The given
answer in (1) should help confirm that you're doing the right thing to begin with (or not!).
Completing the square, or differentiating, will give the value of t when OP is a minimum, and this
should then turn out to be the same instant/position as can be found in part (ii) by differentiating
the vertical (k — ) component of the displacement vector.

Part (iii) can be done in a couple of ways: one is very lengthy, pressing on with the vector
formulation for as long as possible, but the intended approach is to work with distance and time as
scalars on the assumption that the bullet moves in a straight line.

Answers: (i)r= (50m— Stxfg)i +(5rx/1_5)j+ (SI‘«./E - 51‘2)1(;
75, 253
p= "":2”1+ 5

+ gf K (0)60°.



Section C: Probability and Statistics

Q12

Q13

Q14

With given answers, as here, it is important tc make your method clear, since there is a lot of
fiddling going on as candidates inevitably manage to wangle this answer somehow. Splitting the
required event into a series of mutually exclusive events and recognising which of these events are
independent, is crucial, and it helps both you and the examiner if there is an accompanying (brief!)
explanation as to what you are doing. It seems to me that the first part can be approached in at
least a couple of obvious ways. Firstly, one could work out the prob. that one die gives at least one
6 in the first » throws, P(r), say, and then observing that the prob. that both dice have given a 6 at
the " throw is P(ry — P(r — 1). Alternatively, one could write it as the sum of the probs. that
{neither dice has recorded a 6 in the first r — 1 throws and then both give 6s} with the prob. that
{one die gives a 6 before the 7" throw and then the 2™ die first gives a 6 on the »” throw?}.

Finding the expected value of the number of throws is routine, in principle at least, and you are
given a result to use to help you with this, if needed. In (ii), equating this expression (in terms of p
only) to m and then re-arranging gives a ..... equation in p, which should now be very familiar
territory.

Answers: (1) p= —l—{rn+1—\fm2—m+1}.
"

The first couple of terms of the series expansion for e gives the opening result, which you are
obviously intended to exploit later on in the question. Next, p(at least 1 matching pair) is best
considered in the form 1 — p(no matching pairs), and you get (with a little imagination) a whole

foad of fractions of the form -
N

the outset. The laws of indices and a bit of summation of an AP then sort out the rest of the first
problem.

" which can be approximated by the exponential result given at

The next two parts each involve working with an inequality, and the second requires another use
of the initial exponential result. Each employs the remarkably accurate rational approximation to
In 2 given in the question.

Answers: 23; 253,

The pdf sketch in (i) consists of three (actually, five — don’t forget to indicate clearly the zero
bits!) pieces. Then, equating expressions for the endpoints of these pieces, which are defined in
two different ways, immediately gives ¢ and b in terms of k. After this, equating the total area
under this graph to 1 (total probability) then gives the exact value of %, and hence ¢ and b also.
This is the bulk of the question done, and most of it is really pure mathematical content.

The last part is similar in content, requiring — in statistical terms — only the observation that m is
"

given by J‘f(x) = 4. Now, it is not immediately clear which piece of the function that m lies in, so
I

a little bit of justification needs to be given to explain the relevance of any subsequent working
that you give. Some fairly simple approximations for e should enable you to show that m is not in
the first piece but is in the second.

Ink

Answers: (ii) aﬁZInk,bﬂmg;kzem, a= e 17, (i) m=3E'"? -%).

Wi [ 1

, b=

Sy |






Step Ill, Solutions
June 2007



Section A:

Pure Mathematics

The first result can be obtained by applying a compound angle formula to
tan((é’l + 8, ) + (93 + 8, )) and then repeating the application to each of
taﬂ(é’E + 6)2) and tan(é)3 + 6?4)where they appear. On simplification, this
gives

Loty wh 4t~ L, — it =t b, = T
tanlf, + 6, +6, +6, )= it 234 341 503 123
(‘ P 4) L= t,ty =0ty = t,L, — yly = 1yt — b1, + 11,10,

As t,, etc are the roots of the equation ar* + bt +et® +dt +e =0, then
at' +b8° +of’ +di+e= a(x —1 )(t ~t, )(t —t,){1 -1, ), which yields, from
expansion and comparison of coefficients, the four results

R e S LCRUR LU PR A

L]

Qia

e
Ll bt b + 8T, + 6 = and 11,1, =—.
' a a

whid

These substituted in the first result lead to ‘fan(ﬁ1 + &, +6, + 94) = e
a-c+e

Applying double and compound angle formulae to
peos2d +cos(:9 — ) + p = 0 gives the equation

2pcos’ 9 +cosdcosa +sindsina = O, which can be rearranged as

-2
cosa + tan Ssin o = ——
secd
o | oA
Squaring this and replacing tan$ by ¢, (cosa + tsine)® = o

Rearranging this obtains the quartic equation

tisin® o+ sin2¢ + 12 —!—tsin20¢+(¢os2 O:—4p2) =0, and so, from the
0
second result tan(é’l +6, +06, + 6?4) =TT 0, and thus
—ap

& +0,+0,+6, =nm.



2. (@)

135 (20 —1) = o2 (2n)! _ L (n)

2468...2n 21222324..2.n 2"1234...n 27n!

1
Using the binomial theorem, which is valid given the condition x| <—,

22 )

(1—4x)“21 —1+-»( 4x) + -2

21
1.3 1357..2n -1
= 14120+ (20) 4t ( i )(2x)”+...
So the first result of the question yields (1 —4x) = Z leading to the
required expression.
(i)  Differentiating (1 -~4x = Z ( !) with respect to x, and
n
2 2n)! 6 1
multiplying the result by x gives z - = s (2n)tx” and substitutingx = - < —,
(1—4x): = nin—1)! 25 4
gives the desired result.
T > {2n)tx"
(iii)  Integrating (1—4x) =1+ Z( n)i);c with respect to x, gives
n=l ux
> Zn)?x”“ 1 -1
(l —4x) =X+ 2 e i + ¢, and substitutingx = 0 < T gives ¢ = TR
. 2 2 1 TP .
Now substituting x = Py < 7 and simplifying, gives the desired result.

3. (F,=2F =3,F, =5F =8 F =13,F, =21
(i1) The result requires no term beyond F,,,, should appear on the RHS so the
first strategy is to replace F;, , and hence

2 2 - 2
FriwsFopn = Fod = (Fzmz + F;ku)Fz:m —Fa = (szn - Fékn)ﬁémz Ly =B
as required.
(iii) The initial case is trivial to demonstrate, and so the induction runs from
assuming that r,, ,F,, , - F,? =1, and attempting to prove that
F F - F e

2k+D+t T 20k 2k+1)

F2§k+i)+}F2{k+i}—l - Fz(k+'=)2 = sz+3sz+1 - F2k+22 = “sz sz-n + Fz}mz fI’Dm (”)
= (= Fyy ,F,,,, +F,) by a similar argument to (ii) = —(- 1) by inductive hypothesis.

+ F

2k+1



The deduction follows from adding F,,*to both sides of the result just proved.

(iv} This result cannot be deduced directly from (iii) as the nature of the
expression differs in the type of subscript. Thus consider

}??.nwlz + 1 = (F?.n-H _]:2n)2 + I = I ? _ZF‘ZJ:H n + ﬁ;nz + }' = F'Znﬂz _‘?’F

2i+1 2n+1

from (iii) and hence the desired result is obtained.

FYEH + F;.n—EF

2n+l

4,

y=asint = y = acos!

P
! ] ESGC E
x=a(cost+lntan—2-]:>x=a msint+—-——t—~ = a{—sint + cosect) = acost cot

tan -
2

giving ;%’- = tanf .
x

(v intercept a, y axis tangential to curve, x axis asymptote)

{ t
Tangent is y —agsin/ = tan f(x - a[cost +Intan 5)) giving Q as {a Intan > ,O) and

thus PQ = \/((arcosf)2 +(asint)2) =a

y =acost = y = —asin{

x =al~sint +cosect) = x = a{~ cost — cosect cot £)

;4—; = (acostcotf)’ +{acost)’ = a’cot?t

xy— yx = g CcOSICOtt X~ 8Nt —~ @cost x a(— cost — cosecrcott)

= az(—m cos® 1 +cos® f +cot? I) =a’ cot2 f

giving p=acott.



d
From the results for ?‘é—and p,Cis

H . , H
[a(cost +In tana} —psint,asint + pcosf} = (a In tan-z-,a cosect)

Which has the same x coordinate as Q.

1
5. %mx(xz —1)7 =cosh &

y=lnr’ =2Inr
ﬁ’}i 2dr 2coshé@

R S i
o R0 and r = hé
g = ~cosec and r = cosechd,
So differentiating the previous result and substituting,
) de dr
dry 2rsinh0 - =2coshf 0 o(cosechOsinh @ x —sinh? O—coshfcoshd)  2cosh26
et 2 - p2 = pe:
Similarly,
de d
gy 2r72sinh20 " ~2cosh20x 2 A
=" X = L F(sinh29+cosb26’coth@) =~ cosh30
In order to hypothesise a result for o the important thing is to appreciate that the 4
has come from 2 times exponent of » and multiple of 4.
d”y n—1 (n—i)! . . .
So =2 (~1) ~>coshn@ which may be proved by induction, the
e
inductive differentiation step following the same pattern of working as used for a7y
X
d’y
d—=.
and—-5

6.  po=q¢ =a’
and 50 az(p - q) =gq p-pp'g= ——pq(p* - q*) and hence the required result.
If PQ and RS are perpendicular then p—q = ki{r — 5) for some real &, and thus

* * ® ® - r—28
P —q z—k:‘(r -s),andso pg=-a’ ’? g*=a2

% o= —-pS
~q ro-s
For n =23, BB,14 4,etc. = a,a, +bb, =0etc.
bb, xbb, —aua,x-aa
Thus 5, = ——2—-% = 12 2 = —g,and 50 b, = g,
b,b, —d,d,

i.e. two choices of B,|.



Forn=4, B B,14 4,etc. = a,a, +bb, = Octc. but this only yields 3 independent

equations as e.g. aa, +b,b, = 0can be obtained from the other three equations by
a,d, X ad,a, ot ; :

a,a, = T etc. Hence there are arbitrarily many possible choices for B,.

For n > 4, the corresponding results are as for n = 3 or » = 4 depending on whether n

is odd or even.

3
du ool |
=y~ st 2 = — -2 foved
7 0] U=y =TV o tH{x) i}w‘_v_z x —v 2 dv ]j.vz +}.a'v
i )
1) ol T o 1
f—]+Hx) = d = du ==
50 (x +ilx) Jl+u2 ”+Jvl+1dv 5{1+u2 “ERP
Letting x = 1 gives the desired result.
" L Y
(i) y= ==
1+’ 1-y*
-1
du 1- V2 % —yl] = AT 1— 2 2
50 T = ( Y ) 2 Zy( 2 ) = ( 4 ) 3}} and hence the result.
dy 1-y (1-52)?
Using the given substitution for u,

-] —! IV S B (]
X} = X 3 Y = T Y =4 >
Dl (ot ey e
-y
Again letting x = I, and using the result from part (i) gives the desired result.

I
1+—F2z
V3

1
Letting x = :7—; gives the required result.




i
e
By definition t( J f - 5-du , by the previous result just obtained
M
4

ol

V3
t(i) j - dz , and from part (i) r( ) j - dv and so adding these three
1

NE) 1+ 2%
NG
, 1y %1 1
results gives 3!(7?;;) = J—l—;—u—z—du =3P
8. (i) Substituting each u into the differential equation yields simultaneous

equations a{x)+ xb(x) = 0 and e (1 - afx) + b(x)} = 0 which solve to give

x
alx) = ix and b(x) = Tx

The general solution is u = Ax + Be

- X

I d dy ~1{(d 1 d%u
- - 302 ( u) —— which when substituted into equation (*),
U

T ude dv ac) 3y ax

multiplied by 3u, and collected on one side gives the required result,

i du » A-Be™”
u=Ax+Be7 = —=4-Be = y=—p——r
dx 3(Ax + Be ™)
[—e™
and substitution of x =0,y = 0gives A= B and hence y =——~—f~——:—m.
3(x+e J‘)

1 du
(ity  Substituting y = e into the given equation yields

d2u+ X _c_fg 1
dx?  l-xdx 1-x
x replaced by —x

= 0 which is the equation in the first part with

So the general solution is # = Cx + De”*
I+e¢”
x+e”

Substitution of x =0,y =2 again gives 4 = 5, and hence y =

Section B: Mechznics

9. Conservation of energy leads to the equation
1 . 2 2
2{“2” m(a 6’) }r mkia*(8-a) = mkzaz(ﬂ— 0:)2 which, when simplified, and

working in the variable (¢ — &) rather than & can be rearranged as

(60— ) k\/ —(9 a)’ ) .
Separating the variables and performing the standard integral yields
d-a= (,8— fx) sin(kt + ¢) (it does not matter that (ﬁ— cz) <0).




The initial position from which the system is released gives ¢ = g— and so
0= c +(,8-0:)coskt :

. 7 . b/
The three possibilities that can arise are that §=0,6 < 7 that #=0,8= 5 or that

: T
G =
& >0, >

2 T
The first of these is SHM and has period —},;—, which occurs if o (ﬁ - cx) < —-Zm
.. 4
te. if g> 205—5.
For the second case, oscillations do not occur. Then,

0 =0=>sink = 0=>cosks = ~1 (not cosks =1 as this is the initial position) and so
w Fis

—ma-{f-a) e f=20-—.

S =a (ﬂ (x) ie. =2« >

Fia
The third case is partially SHM until &= 3 and then the motion is reflected.

T
So a quarter of the period is given by T=a + (ﬁ — a) coskf and hence the period is

4 5T _ ) 7
~cos ™! which occurs if S <2a — 5

k B-a

10.  Using uniform acceleration formulae with (x,y) = (— gsin ¢,——gcos¢) , then

1 1
(x,y)=(Vtcos€—§gtzsin¢,Vtsin t9—~~2‘gtzcos¢].
Veos@  2Vsind
gsing  gcosd

To return on the same path x =0 when y=0. S0 t=

i.e.2tangtand = 1
Also using v’ = u? +2as in the x direction 0=V ? cos’ § - 2gRsing

V?cos® 6
ie. R:m2gsin¢
Thus
2)* i 5 ) 5 ) i ) 1 s
R = 4singsec 6’=4sm¢$(1+tan 6‘)=4sm¢(1+zcot ¢jm4sm¢(l+z(cosec ¢—1))

= 3sin ¢ + cosecd
1 I
Consider y = 3x + L > 0. By differentiation, this is least for x = M\/? )

2 2
=4 is 2/3, and the largest value of R is 4 .
gR 3g

Thus the least value of



If the angle between mg and N is &, then conserving energy and either differentiating
the energy equation or taking moments about the point of contact yields

i 1 2 .
Emuz +mga = Emaz 8 +mgacosf and 0=l gsind

Resolving in the opposite direction to F, mgsin@— F = ma @ and so, from the second
equation above, F =0,
2
Resolving in the opposite direction to N, mgcos@ — N = ma @ ,
2
and losing contact N =0,s0a8 = gcosd.

Thus from the energy equation u° +2ag = 3agcos@ and so the hub has fallen

u'+2ag ag-u’

> (), but is less than a.
3g 3g

a—acosf=a-—

(i)

m 2 om . )
—2—(251) a +_2—g(2a)0059 and 0=2a6~- gsind ,

B | e

1 m 2 M
ore —— (2u)’ +2 g(2a) =
As before 5 2( u)’ + 5 2(2a)

fa—

and mgsin@—Fz—;—z(Za)é’ so F =-2-mgsin(9.
L2 2
Also mgcosf—N = "’5"(211)9 and so when contact is lost N = 0,50 a8 = gcosé ,

u’ +ag = 2agcosf,
u' +ag  ag—u’

2g 2g

and the hub has fallen o — a. cosfd=q -~ > 0, but is less than a.



Sowhen N =0, uN =0, F >0, but we require F < 4N not to slip, and hence
slipping will certainly oceur before it loses contact with the table,

Section C:  Probability and Statistics

12,
= 1 (2n-1)2n
E(N)‘:g;zn_l‘“znml 2 7
E(NZ)_Z”i 1, 1 (2n—1)2n(4nw1):n(4n—1)

T &on 1 T 6 3

N 1 1 1
E(Y)= E[Z X,) =5 E(X,)+ T E(X, + X, )= o (4042004 3. 420 = 1))

1 y(Zn—E)2n_n£
C 2n-1 2 B

n{4n—1)
3

I
x1x pu+ X 2 x 24+, x(2n-Dx(2n-Dyu=

T on-1 2n—1 -1

E(YN)

nl4n —1) 1

and so Cov(Y,N) = 3 y—n2y=~§n(nml)y

E(x7)=var(x,)+(E(x,)) = 0% + 4’

Also (X, + X, 40X, ) =2 X7 423 X, X, , and so
=1

i

E((X, + X, e, +X,,)2) =r{c? +#2)+2f_(£2__1_)m‘u2

Thus

E(y?) = 2;:— 1 zj?z:(r(o—l +g2)+21’§’5’—9#2} = {o? + 1)+ n(4r;v- 1)#2 o =na?t n(4r;— ),
and so Var(Y) = no? +mﬂ2 -’ = no’ +i”_“_1)~/u2

3

13, (i) p,(2)is the probability of landing in the pool for the first time on the 2™
jump starting 1.5m away which is the probability that the first jump is Im which is p.
(ii) u, =1
p=qgand p,(2)=p sou, =qg+2p=1+p=2-g
P =0, p(2)=1-p" =q(1+ p)=2¢—¢*, and p,(3)=p* =1-2g+¢" s0
w, =2(2g-¢*)+31~2¢+¢*) =32+ ¢°
(iii} Using the values u, =1, w, =2 —g, and u, =3~ 2¢g +¢”, we obtain three
equations:-
A+B+C=1 (1)
~Ag+ B+2C=2—-¢g 2



Ag* +B+3C=3-29+q¢" (3)

It makes sense to consider (3) ~(2) and (2) ~(1) to eliminate B and then subtract the
resulting equations to eliminate C, and hence we find that

(3)“2(2)+(1):>141(q2+2q+1)rq2 ﬁAm[“EW] ,

g+1
substituting in (2)—(1):(;%?)2(—47-1%0; E—q::>C=-l:1; , and s0
B:@ff

) - |
%0t :{5—%) (Wq)”ul"}m(qfi)2 +1jqn: gj)l)2 +(q~+~])6;+2q)+}7‘:29n

For large n, the first term approaches zero, and the second term is negligible in

comparison with the third for ? " <l<<n

g+
I
p+2q"
The expected distance covered in one jump is ¢ +2 p and as jumps are of integer

Hence u, =

I :
length, to get to the pool from a distance [n - Ejm needs a distance n metres to be

|
p+2qn'

Jjumped and so the expected number of jumps would be

4. () If W is the area of the smallest circle with centre O that encloses the
hole made by a single dart throw then the p.d.f. of W is given by

I
— 0w
T

flw) =

0, otherwise

[f X is the area of the smallest circle with centre O that encloses all the » holes made
then

=y nr
—dy =,
7

-l o g
ax
P(x<X<xwi~50c)=n[-)~C~) — and so E(X):jxxn(ij
7 T : Fis
On the other hand, if ¥ is the area of the smallest circle with centre O that encloses all

-2 R
the (n—1) holes nearest to O then P{x <Y < x+ &) =n{n- })(_x_) (1 - —{] & and
T n)om

so E(Y)= zfx x n{n — I)[(—i—) " - (_7)9 MJ W;de :W

0

(ity  If Zis the area of the smallest square with centre O that encloses all the # holes
made then, in similar manner to (1)

XY y N\ 4n
Plx<Z<x+ &)= n(m) s and so E(Z) = j'x X n(z) =X =
&

4 4 n+l



(iii)  If we knew that the dart landed inside the circle of radius 1 centre Q when it
hit the square dartboard, then the answer would be that we obtained for the circular
board. But there is a non-zero probability that the dart could land in larger circles if it
fell on the board outside the circle of radius I and hence the expected area of the
smatilest circle for the square dartboard is larger than that for the circular board.

Algebraically, if S is the expected area of such a circle if the dart falls outside the
circle on the square board, and E(X) is as in part (i),

7
the expected area = [%9 E(X)+ (1 - ZJS , where S > E(X), and so this is

[s —(1 —%DE(X) +(1 wg—)s _ E(X)+(E —9(8~ E(X))> E(X)

2
N
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STEP Mathematics I 2007 Report
General comments

There were significantly more candidates attempting this paper this year (an increase
of nearly 50%), but many found it to be very difficult and only achieved low scores.
In particular, the level of algebraic skill required by the questions was often lacking.
The examiners’ express their concern that this was the case despite a conscious effort
to make the paper more accessible than last year’s. At this level, the fluent, confident
and correct handling of mathematical symbols (and numbers) is necessary and is
expected; many good starts to questions soon became unstuck after a simple slip.
Graph sketching was usually poor: if future candidates wanted to improve one
particular skill, they would be well advised to develop this.

There were of course some excellent scripts, full of logical clarity and perceptive
insight. It was pleasing to note that the applied questions were more popular this year,
and many candidates scored well on at least one of these. It was however surprising
how rarely answers to questions such as 5,9, 10, 11 and 12 began with a diagram.

However, the examiners were left with the overall feeling that some candidates had
not prepared themselves well for the examination. The use of past papers to ensure
adequate preparation is strongly recommended. A student’s first exposure to STEP
questions can be a daunting, demanding experience; it is a shame if that takes place
during a public examination on which so much rides,

Further, and fuller, discussion of the solutions to these questions can be found in the
Hinis and Answers document,

Comments on specific questions

1 This question required little more than a clear head and some persistence:
candidates had either ample or very little of both, and thus most scores were
either high or very low. The examiners would like to stress that a solutionto a
question such as this must be written out methodically and coherently: many
answers which began promisingly were soon hopelessly fragmented and
incoherent, leaving the candidate unable to regain his or her train of thought.
This was especially true when deriving the final expression given on the exam
paper. Examiners follow closely a candidate’s line of reasoning, and they have
to be certain that the candidate has constructed a complete argument, and that
he or she has not arrived at a printed result without full justification.

2 This was a popular question, and was usually well done. The argument at the
end was often incomplete, though: many candidates simply stated that ¢ =1 or
t = 2 without explaining why no other values were possible. To do so, use had
to be made of the fact that s and ¢ have no common factor other than 1.

3 This was the most popular question on the paper, and many different methods
were seen. The intended method was to use the identities
cos’f —sin® #=cos 2 O and cos' 6+ sin® §=1- 1% sin® 2 8 to evaluate the
integrals of cos* 8 — sin® & and cos® 6 + sin* 6, and hence be able to write down



10

separately the values of the integrals of cos* 6 and sin* 6. A similar approach
works well for cos® 8- sin® @ and cos® 6 + sin® 6. Other methods were, of
course, acceptable, and many candidates received high marks for this question.

This question was found to be very difficult. The initial factorisation was
beyond most candidates, even given the linear factor x + & + ¢. Anyone who
wants to read Mathematics at university must be able to factorise quickly
cubic expressions such as this one, and also x’ = y*. The Hints and Answers
document discusses this in more detail.

Candidates who progressed to the second part of the question often deduced
thatak +bk+c=0and b + ck+a= 0, but then tried to eliminate £; given
that the result they were asked to derive was still in terms of £, this was an
unwise strategy.

Only a few candidates made much progress with this question, even though it

only required GCSE Mathematics. Basic properties of triangles (for example,

the sine and cosine rule, and the location of the centroid, the circumcentre and
the incentre) are assumed knowledge at this level. It was surprising how many
candidates tried to answer this question without a diagram.

This was a popular, straightforward question, which was often answered well.
However, algebraic errors still occurred, for example when expanding (x — ).

Part (1) was well done by most of those who attempted this question, but many
then found it difficult to develop the strategy in part (ii). A certain amount of
trial and error is needed to complete the squares in an expression in terms of
both & and f, but the coefficients (in particular, 1¢7, 1/ and 26 5°%) do not
permit many possibilities. This question demanded some stamina, as
Mathematics at university level also does.

This question was answered poorly; many candidates were unable to sketch
the graphs correctly, even given the results derived earlier in the question. For
example, many graphs did not touch at (2, 8). Also, many graphs were drawn
with turning points, when a simple check of the derivative would have
revealed that there were none. In part (1i1), the effect of the negative coefficient
of x* was often ignored.

Graph sketching is a very important skill in all mathematical subjects — from
Economics to Engineering. STEP candidates are strongly advised to practise
this skill as much as possible.

This was a popular question, and was usually well done. Not many candidates
recognised that sin & cos 8 = % sin 2 §, which makes the final inequality
easier to obtain. Knowing identities “both ways” is important.

Only a few attempts at this question were seen, and those that did rarely made
much headway; worryingly, the accurate simplification of the solutions of
simple linear equations was found to be very difficult.
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14

Hardly any attempts at this question were seen. [t was remarkable how few
diagrams were seen; it 1s always much easier for both the candidate and the
examiner if answers begin with a labelled diagram.

Very few tree diagrams were seen here, and hence very few correct solutions
were constructed; a clear tree diagram is invaluable when attempting a
complicated probability question such as part (ii). Most candidates identified
some (if not all) of the possible outcomes, but many mistakes were made (for
example, writing a denominator of N rather than N + 1 or N - 1).

The subsequent algebraic simplification was found to be very demanding.
Candidates would have probably made more progress if they had been more
willing to factorise groups of terms which had obvious common factors, rather
than (for example) attempting to write all the fractions with a common
denominator.

A lot of attempts at this question were seen, but conceptual errors undermined
many solutions. In particular, a lot of candidates seemed not to realise that
they were being asked to calculate conditional probabilities in parts (ii) to (vi).

Only a few attempts at this question were seen. Poor graph sketching limited
many candidates’ progress; the importance of the ability to sketch accurately
standard graphs such as y = xe™ cannot be overstated.



STEP Mathematics II 2007 Report

General Remarks

Although the paper was by no means an easy one, it was generally found a more accessible paper
than last year’s, with most questions clearly offering candidates an attackable starting-point. The
candidature represented the usual range of mathematical talents, with a pleasingly high number of
truly oufstanding students, many more who were able to demonstrate a thorough grasp of the
material in at least three questions; and the few whose three-hour fong experience was unlikely to
have been a particularly pleasant one. However, even for these candidates, many were able to make
some progress on at least two of the questions chosen.

Really able candidates generally produced solid attempts at five or six questions, and quite a few
produced outstanding efforts at up to eight questions. In general, it would be best if centres
persuaded candidates not to spend valuable time needlessly in this way — it is a practice that is not
to be encouraged, as it uses valuable examination time to little or no avail. Weaker brethren were
often to be found scratching around at bits and pieces of several questions, with little of substance
being produced on more than a couple. It is an important examination skill — now more so than
ever, with most candidates now not having to employ such a skill on the modular papers which
constitute the bulk of their examination experience — for candidates to spend a few minutes at some
stage of the examination deciding upon their optimal selection of questions to attempt.

As a rule, question 1 is intended to be accessible to all takers, with question 2 usually similarly
constructed. In the event, at least one — and usually both — of these two questions were among
candidates’ chosen questions. These, along with questions 3 and 6, were by far the most popularly
chosen questions to attempt. The majority of candidates only attempted questions in Section A
(Pure Maths), and there were relatively few attempts at the Applied Maths questions in Sections B
& C, with Mechanics proving the more popular of the two options.

It struck me that, generally, the working produced on the scripts this year was rather better set-out,
with a greater logical coherence to it, and this certainly helps the markers identify what each
candidate thinks they are doing. Sadly, this general remark doesn’t apply to the working produced
on the Mechanics questions, such as they were, As last year, the presentation was usually appalling,
with poorly labelled diagrams, often with forces missing from them altogether, and little or no
attempt to state the principles that the candidates were attempting to apply.

Comments on respenses to individual questions
SECTION A: PURE MATHEMATICS

Q1 Most candidates attempted this question and the majority coped fairly well with the
algebraic demands. Surprisingly, it was when the work went numerical that candidates
tended to let themselves down; poor arithmetic providing the main difficulty. The final three
marks available in (i) parts (a) and (b) were the marks most frequently scorned, generally
being lost by candidates’ unwillingness or inability to simplify fractions and/or turn them
into decimals. In many cases, candidates had difficulty deciding on a suitable value for & in
(1) (b) and (ii). In (b), the value k= 50 was often selected, rather than the intended value of
— 4. Although this does lead to a similar set of working, the ultimate approximation is
relatively poor, and they lost the final mark here. 1t is, rather more tellingly, indicative of the
way in which many modern A-level mathematicians have great difficulty in thinking only in



Q2

terms of positive integers! A small, but significant, number of candidates offered a value of
k that exceeded 100 (the denominator of the “x” term), and these were penalised all four of
the available marks for this part of the question, on the not unreasonable grounds that they
really should have appreciated the general convergence condition | <% | <1 for binomial

series of this kind.

This question was also a very popular one, although many candidates gave up their attempt
when the algebra started to get a little too tough for them, which generally happened later if
not sooner. With this in mind, it has to be said that when candidates did get stuck at some
stage of this question, the principal cause was (again!) an unwillingness or inability to
simplify algebraic expressions before attempting to work with them. This was particularly
important when factorising otherwise lengthy expressions with lots of (g — p)s involved in
them.

The sketch required in (ii) was intended to be a gentle prod in the right direction for later use
in the question, and should have been four easy marks for the taking. Strangely, however, it
was often not very well attempied at all. A surprising number of candidates couldn’t even
manage to draw their cubic through O; and many others seemed unable to make good use of
the given conditions, which - despite looking complicated — actually just ensured that all the
fun was going on in the first quadrant in an attempt to make life easy. Even more surprising
still was the number of sketches that had non-cubic-like kinks, bumps and extra inflection
points in them. [ was particularly baffled by this widespread lack of grasp as to what a cubic
should actually look like! I was equally baffled by the extraordinarily large body of
candidates who failed to do what the question explicitly told them they were required to do,
by not marking the point of inflection on their sketch and, in many cases, not even
attempting to describe the symmetry of it either.

An apology has to be made at this point, since the region R in the question was
insufficiently clearly defined and there were, in fact, two possibilities. Candidates were not
penalised for choosing the “wrong™ one at any stage of the proceedings, although the choice
of the “left-hand” R would have prevented such candidates from using the short-cut for the
following attempt at the area. ALL scripts where candidates made the “wrong” choice were
passed to the Principal Examiner and gtven careful individual consideration. Only about 25
candidates made such a choice: of these, over half had failed to make any attempt at all at
the area, and most of the rest had started work on the area and, to all intents and purposes,
given up immediately. Two more had found the intended area anyway, despite their
previous working (and were not penalised for having switched regions), and (I think) only
three had pursued the “left-hand” area almost to a conclusion. Of course, they were unable
to get the given answer, but they did get 7 of the 8 marks available. In each of these cases, it
was fortunate (for us and them) that this was their last question, so it was safe to say that
they hadn’t been unduly penalised for time in any way. It is, of course, impossible to say
whether they might have seen the intended short-cut approach. In this respect, however, it
has to be said that remarkably few candidates saw the symmetry approach anyhow. Partly, I
suspect, due o not having picked up the hint at the diagram stage (see earlier)! On the plus
side, for us, [ imagine that the reference to the point of inflection on the diagram had at least
ensured that most candidates chose the intended region K. Only 2 of the 25 or so candidates
scored an overall mark that fell just below a grade boundary, and both of these were given
the benefit of the doubt by the Chief Examiner.
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This was another popular question, and was usually a good source of marks for those
candidates who attempted it. The first two parts were usually successfully completed. In part
(1) (b), candidates had to employ the ¢ = tan 2 x substitution which seems to have fallen
into disuse in recent years (due to modularity!). Having said that, most candidates were able
to make some progress and, where they did fall down, it was generally due to a lack of
confidence in handling trigonometric identities. One of the advantages of these last two parts
to the question was that they could be done in one of two directions, and many candidates
were able to spot the connections and exploit them satisfactorily. When errors arose, they
were frequently due to a lack of care with constants, and a correct final answer was not often
to be found as a result.

This question was a popular one for partial attempts; with most candidates giving up
towards the end of the introductory part and going elsewhere. It was slightly surprising to
see candidates being put off in this way, since the given result made it perfectly possible to
move successfully into the three following cases. For those who did press on, many lost a
mark for not verifying (somewhere) that the chosen values of a,  and v actually satisfied
the required condition. Then, in (ii), one of the two brackets was identically zero, the
significance of which was largely overlooked, with many candidates offering again the same
two solutions as had been found in part (i). In (iii), it was important to note first 4 and B in
terms of x, although some candidates adopted a valid alternative approach by first collecting
up the two 3x terms.

Although this was not a popular choice of question, those who attempted it generally did
rather well on it. Finding f* and £ was a routine algebraic slog, and most attempts coped
successfully with it. Spotting, and then exploiting, the periodicity of the function was then a
relatively easy matter. Pretty much everyone used x = tan @ appropriately in (i), with
formal and informal induction approaches evenly mixed. Some shrewder candidates
identified the two forms for the cases » =1, 2, and 3 and then noted that the periodicity of
the tan function accounted for everything thereafter.

The final part of the question had intended to be a simple take on part (ii), but with 7= sin &

this time, so that ~1-¢* =cos &, and attempts at this part of the question generally fell
evenly into one of the two following camps: those who gave up, and those who proceeded as
intended. In all, I think there were just three candidates who noticed the extra complication
that can arise in this case, with just two or three more following a separate line of enquiry
without realising the inherent dichotomy in the “powers” of the function g. A full inspection
of the function exposes the fact that g" takes different forms depending upon which part of

the domain of g is employed. This is because the +1-#* bit should actually be | cos @ |,

and this leads to different answers for g2 in the range % < ¢ <1 than in the rest of g’s
domain, so that candidates could get different answers from slightly different approaches.
With so few candidates expected to attempt this last part of the question, and with the
alternate route leading to a much easier answer (where the sequence g” turns out to be
periodic with period 2), it was considered to be a suitable final part to the question.
Candidates were not expected to take more than one route, nor to comment on the potential
for different answers. In the event, none did the former, although a few gave a mention of
the latter property.

This was one of the most popular questions on the paper, although the number of completely
successful attempts could be counted without having to resort to toes! Part (i) was
reasonably routine, although attempts at simplification were often not very well done, and

left many candidates having to resort to “otherwise” approaches for integrating ~3+x” ,
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which was a great shame as they got no marks for ignoring the “hence” instruction in the
question. Treating the differential equation in part (ii) as a quadratic in dy/dx proved an
obstacle for many, but a lot of candidates seemed quite happy to work with it as such and
made good progress in the rest of the question. The biggest hurdle to completely successful
progress, however, once again lay in candidates’ inability to simplify expressions at various
stages, and sign and/or constant errors proliferated.

Not very many candidates attempted this question, but those who did usually found it to be
relatively straightforward. It was only the very last part that required much thought, and this
was where most attempts lost a few marks. A small number of efforts failed to get beyond
part (i1); this was due to not finding a suitable function to work with that gave what turns out
to be the Arithmetic Mean-Geometric Mean Ineguality. This was a bit of a shame, since the
question actually gives the log. function at the very beginning, along with the sine function,
which is used in (i).

This is really just half of the (<) proof of Ceva’s Theorem. Several candidates even
recognised it as such. Of the remarkably small number of attempts submitted, most fell
down at some stage (again) by failing to be sufficiently careful with signs/arithmetic/the
modest amounts of algebra involved. It often didn’t help those candidates who chose
completely different symbols each time they did a stage of the working.

SECTION B: MECHANICS

This was the least popular of the Mechanics questions, perhaps because it commenced with
a request for an explanation. As mentioned already, a clearly labelled diagram or two would
have been enormously helpful here! The fact that there are only the two mechanical
principles being employed here should have made it an easy question, but efforst were
generally very poor.

This was most popular of the three Mechanics questions, although most efforts failed to get
very far into it. The routine opening part, finding the position of a centre of mass, probably
accounts for its initial (relative) popularity, but progress beyond this point was pitifully
weak in most cases. Resolving and taking moments frequently appeared, but often had to be
searched-for in amidst a sea of other statements, many of which were incorrect, repetitive or
just nonsensical. Very few candidates indeed grasped the fact that the horizontal force P
could be in either direction, and the given answer was mostly fiddled, usually by simply
placing modulus signs around the answer.

This was almost as popular a question on Section B as Q10, being (in principle, at least) a
reasonably straightforward projectiles question. Whilst many efforts were successful up to
the final part, an awful lot of the attempts foundered at the very outset by failing to do the
simplest of tasks: namely, noting exact values for sin & and cos ¢ from tan 8 =14 It
simply beggars belief that serious candidates can proceed through quite a large part of a
question like this with expressions such as sin(arc tan ') still in there! They may as well
just hang out a flag which says “I'm an incompetent mathematician” on it! The three-
dimensional aspect of the introduction was enough to confound most candidates attempting
this question, and they were forced to resort to fiddling the given answer for the distance
OP. Many attempts picked up several marks here and there throughout the question without
producing anything particularly coherent, and few coped with the hazards of the last part —
largely, I suspect, due to the fact that they were required to do some approximating!



Q12

Q13

Q14

SECTION C: STATISTICS

This was the least popular of the Statistics questions, with very few attempts seen on it.
Most of these tended to consist of muddled or unexplained reasoning which led to the
fiddling of (i)’s given result. Progress into (ii) was either non-existent or sketchy as a
consequence.

This is a lovely approach to a well-known problem, and employs a very handy rational
approximation to In 2. Although it drew a small number of attempts, many of these were
partial attempts at best, and few were seen of a good standard throughout. Disappointingly,
several candidates arriving at the correct quadratic equation in the third part didn’t seem to
know how to go about solving it. As was mentioned earlier, regarding the end of Q11,
working with approximations proved to be a particular obstacle for most candidates who
made it to the last part here.

This was the most popular of the Statistics questions, probably due to the high pure
mathematical content. The sketch introduction was intended to ensure that candidates drew
something which would remind them what integrals they should be working with later on.
As with Q2, it presented more problems than should have been the case, with many
candidates losing marks for fairly trivial things which would have cost them dearly even on
an ordinary AS/A-level module paper. The integration for total probability was generally
done very well, although several candidates had often failed to gain o and b in terms of £ in
a simplified form, or at all, and this rather hindered them. In (iii), most candidates didn’t
seem to feel that 1t was necessary to justify which region of the function that the median lay
in, often doing one calculation after making an assumption about the matter. In general, it is
always best if candidates can justify their choices.



STEP Mathematics HI 2007 Report
Section A:  Pure Mathematics

1. This question was popular. Many candidates did not simplify their first
expression into the symmetrical form which made it harder for them to spot the use of
the sums and products of roots results. A common slip was to make a 1 by default
which also obscured what was going on. Most struggled to take the given equation
requiring solution and produce a quartic equation in t (tan &), some producing a
quartic equation in cos¥, and somehow expecting to use the earlier results.

2. This question was popular though not well answered. Solutions to part (i)
were frequently unconvincing, though to part (if) were quite good if they avoided
elementary errors in working. Part (iii) was less well attempted with some not
spotting to use integration, some stumbling over “+ ¢” and some not spotting the
value of x to substitute.

3. This question was popular. Many solutions to part (ii) were rambling and
lacked a sense of direction, even if correct. The induction in (iii) was frequently
incorrectly handled and a common error was to replace » by k/2. Part (iv) caused
difficulties.

4, This question was quite popular. A lot of attempts involved rambling
H
trigonometrical manipulations, and few spotted the standard differential ofin tan 5

The curve sketch was often omitted or incorrect, and there was a lot of complicated
working using e.g. the equation of the normal ete. to find the centre of curvature.

3. This was frequently attempted, though lack of facility with hyperbolic
functions meant that few progressed beyond the first two differentials, and for those
going further, the working was not methodical enough to spot the factorial that would
emerge in the general result.

6. This was the least popular Pure question and very little success was achieved
by the few that attempted it. The first result was often obtained correctly by
expressing each of the four complex numbers in modulus-exponential form, but then
the perpendicularity was the stumbling block.

7. This was a very popular question. As the question led the candidates through
there were a number of unconvineing solutions to parts of the question, but overall it
was reasonably well handled.

8. This ranked alongside question 5 in popularity and success. Frequently, it was
caiculation errors that obscured the path through part (i) and the two differences
between part (i) and part (i) were enough to put most off the track for part (ii), even if
they had completed (i) successfully.



Section B: Mechanics

9. This was little attempted. Some did struggle through to the solution of the
differential equation, but the appreciation of the three possible cases eluded them.

10.  This was the most popular of the Mechanics questions, but less so than any but
question 6 of the Pure. Most managed to obtain the first two results correctly, but
then struggled to find the further result. The deduction for the largest R was rarely
spotted leading to some unnecessarily unwieldy calculus.

11.  There were very few attempts at this question.

Section C:  Probability and Statistics

12, There were some aftempts at this question but they faltered when trying to find
the expectation of ¥, even though some may have believed that they had obtained the
required result through false logic.

13, This was the most popular of the Probability and Statistics questions, ranking
alongside questions 5 and 8. The first two parts were competently handled, but most
got bogged down in the algebra of part (iii) through not having a clear strategy to

solve the equations.

14.  There were few answers of any substance to this question.






STEP Mathematics (9465, 9470, 9475)

June 2007 Assessment Series

Unit Threshold Marks
Unit Maximum S 1 2 3 U
Mark
9465 120 81 66 49 36 0
9470 120 95 67 56 35 0
9475 120 86 64 52 35 0
The cumulative percentage of candidates achieving each grade was as follows:
Unit S 1 2 3 4
9465 7.08 16.46 45.84 69.74 100
9470 12.89 38.10 53.50 83.19 100
9475 12.63 38.30 57.56 85.09 100
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